ﻻ يوجد ملخص باللغة العربية
We continue our study of the correlators of a recently discovered family of BPS Wilson loops in N=4 supersymmetric U(N) Yang-Mills theory. We perform explicit computations at weak coupling by means of analytical and numerical methods finding agreement with the exact formula derived from localization. In particular we check the localization prediction at order g^6 for different BPS latitude configurations, the N=4 perturbative expansion reproducing the expected results within a relative error of 10^(-4). On the strong coupling side we present a supergravity evaluation of the 1/8 BPS correlator in the limit of large separation, taking into account the exchange of all relevant modes between the string world-sheets. While reproducing the correct geometrical dependence, we find that the associated coefficient does not match the localization result.
We study the correlation function of two circular Wilson loops at strong coupling in N=4 super Yang-Mills theory. Using the AdS/CFT correspondence, the problem maps to finding the minimal surface between two circles defined on the boundary of AdS, an
We study the dual gravity description of supersymmetric Wilson loops whose expectation value is unity. They are described by calibrated surfaces that end on the boundary of anti de-Sitter space and are pseudo-holomorphic with respect to an almost com
We study the correlator of concentric circular Wilson loops for arbitrary radii, spatial and internal space separations. For real values of the parameters specifying the dual string configuration, a typical Gross-Ooguri phase transition is observed.
By considering a Gaussian truncation of ${cal N}=4$ super Yang-Mills, we derive a set of Dyson equations that account for the ladder diagram contribution to connected correlators of circular Wilson loops. We consider different numbers of loops, with
We study a general class of supersymmetric Wilson loops operator in N = 4 super Yang-Mills theory, obtained as orbits of conformal transformations. These loops are the natural generalization of the familiar circular Wilson-Maldacena operator and thei