ﻻ يوجد ملخص باللغة العربية
In the beta-deformed N=4 supersymmetric SU(N) Yang-Mills theory we study the class of operators O_J = Tr(Phi_i^J Phi_k), i eq k and compute their exact anomalous dimensions for N,Jtoinfty. This leads to a prediction for the masses of the corresponding states in the dual string theory sector. We test the exact formula perturbatively up to two loops. The consistency of the perturbative calculation with the exact result indicates that in the planar limit the one--loop condition g^2=hbar{h} for superconformal invariance is indeed sufficient to insure the {em exact} superconformal invariance of the theory. We present a direct proof of this point in perturbation theory. The O_J sector of this theory shares many similarities with the BMN sector of the N=4 theory in the large R--charge limit.
We introduce a nonperturbative approach to correlation functions of two determinant operators and one non-protected single-trace operator in planar N=4 supersymmetric Yang-Mills theory. Based on the gauge/string duality, we propose that they correspo
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined
The collinear factorization properties of two-loop scattering amplitudes in dimensionally-regulated N=4 super-Yang-Mills theory suggest that, in the planar (t Hooft) limit, higher-loop contributions can be expressed entirely in terms of one-loop ampl
We consider the $mathcal{N}=2$ SYM theory with gauge group SU($N$) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-$N$ t Hooft expansion and is dual