ﻻ يوجد ملخص باللغة العربية
Gauge-invariant systems in unconstrained configuration and phase spaces, equivalent to second-class constraints systems upon a gauge-fixing, are discussed. A mathematical pendulum on an $n-1$-dimensional sphere $S^{n-1}$ as an example of a mechanical second-class constraints system and the O(n) non-linear sigma model as an example of a field theory under second-class constraints are discussed in details and quantized using the existence of underlying dilatation gauge symmetry and by solving the constraint equations explicitly. The underlying gauge symmetries involve, in general, velocity dependent gauge transformations and new auxiliary variables in extended configuration space. Systems under second-class holonomic constraints have gauge-invariant counterparts within original configuration and phase spaces. The Diracs supplementary conditions for wave functions of first-class constraints systems are formulated in terms of the Wigner functions which admit, as we show, a broad set of physically equivalent supplementary conditions. Their concrete form depends on the manner the Wigner functions are extrapolated from the constraint submanifolds into the whole phase space.
We analyze several integrable systems in zero-curvature form within the framework of $SL(2,R)$ invariant gauge theory. In the Drienfeld-Sokolov gauge we derive a two-parameter family of nonlinear evolution equations which as special cases include the
A general method of the BRST--anti-BRST symmetric conversion of second-class constraints is presented. It yields a pair of commuting and nilpotent BRST-type charges that can be naturally regarded as BRST and anti-BRST ones. Interchanging the BRST and
We develop the general theory of Noether symmetries for constrained systems. In our derivation, the Dirac bracket structure with respect to the primary constraints appears naturally and plays an important role in the characterization of the conserved
We consider Khudaverdians geometric version of a Batalin-Vilkovisky (BV) operator Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order dif
We show how the Newton-Hooke (NH) symmetries, representing a nonrelativistic version of de-Sitter symmetries, can be enlarged by a pair of translation vectors describing in Galilean limit the class of accelerations linear in time. We study the Cartan