ﻻ يوجد ملخص باللغة العربية
We consider the self-adjoint extensions (SAE) of the symmetric supercharges and Hamiltonian for a model of SUSY Quantum Mechanics in $mathbb{R}^+$ with a singular superpotential. We show that only for two particular SAE, whose domains are scale invariant, the algebra of N=2 SUSY is realized, one with manifest SUSY and the other with spontaneously broken SUSY. Otherwise, only the N=1 SUSY algebra is obtained, with spontaneously broken SUSY and non degenerate energy spectrum.
We compute the deficiency spaces of operators of the form $H_A{hat{otimes}} I + I{hat{otimes}} H_B$, for symmetric $H_A$ and self-adjoint $H_B$. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumanns theory. The
Relativistic arbitrary spin Hamiltonians are shown to obey the algebraic structure of supersymmetric quantum system if their odd and even parts commute. This condition is identical to that required for the exactness of the Foldy-Wouthuysen transforma
We investigate self-adjoint extensions of the minimal Kirchhoff Laplacian on an infinite metric graph. More specifically, the main focus is on the relationship between graph ends and the space of self-adjoint extensions of the corresponding minimal K
Two known 2-dim SUSY quantum mechanical constructions - the direct generalization of SUSY with first-order supercharges and Higher order SUSY with second order supercharges - are combined for a class of 2-dim quantum models, which {it are not amenabl
We apply the method of self-adjoint extensions of Hermitian operators to the low-energy, continuum Hamiltonians of Weyl semimetals in bounded geometries and derive the spectrum of the surface states on the boundary. This allows for the full character