ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface spectra of Weyl semimetals through self-adjoint extensions

61   0   0.0 ( 0 )
 نشر من قبل Babak Seradjeh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Babak Seradjeh




اسأل ChatGPT حول البحث

We apply the method of self-adjoint extensions of Hermitian operators to the low-energy, continuum Hamiltonians of Weyl semimetals in bounded geometries and derive the spectrum of the surface states on the boundary. This allows for the full characterization of boundary conditions and the surface spectra on surfaces both normal to the Weyl node separation as well as parallel to it. We show that the boundary conditions for quadratic bulk dispersions are, in general, specified by a $mathbb{U}(2)$ matrix relating the wavefunction and its derivatives normal to the surface. We give a general procedure to obtain the surface spectra from these boundary conditions and derive them in specific cases of bulk dispersion. We consider the role of global symmetries in the boundary conditions and their effect on the surface spectrum. We point out several interesting features of the surface spectra for different choices of boundary conditions, such as a Mexican-hat shaped dispersion on the surface normal to Weyl node separation. We find that the existence of bound states, Fermi arcs, and the shape of their dispersion, depend on the choice of boundary conditions. This illustrates the importance of the physics at and near the boundaries in the general statement of bulk-boundary correspondence.



قيم البحث

اقرأ أيضاً

We compute the deficiency spaces of operators of the form $H_A{hat{otimes}} I + I{hat{otimes}} H_B$, for symmetric $H_A$ and self-adjoint $H_B$. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumanns theory. The structure of the deficiency spaces for this case was asserted already by Ibort, Marmo and Perez-Pardo, but only proven under the restriction of $H_B$ having discrete, non-degenerate spectrum.
Smooth interfaces of topological systems are known to host massive surface states along with the topologically protected chiral one. We show that in Weyl semimetals these massive states, along with the chiral Fermi arc, strongly alter the form of the Fermi-arc plasmon, Most saliently, they yield further collective plasmonic modes that are absent in a conventional interfaces. The plasmon modes are completely anisotropic as a consequence of the underlying anisotropy in the surface model and expected to have a clear-cut experimental signature, e.g. in electron-energy loss spectroscopy.
We consider the self-adjoint extensions (SAE) of the symmetric supercharges and Hamiltonian for a model of SUSY Quantum Mechanics in $mathbb{R}^+$ with a singular superpotential. We show that only for two particular SAE, whose domains are scale invar iant, the algebra of N=2 SUSY is realized, one with manifest SUSY and the other with spontaneously broken SUSY. Otherwise, only the N=1 SUSY algebra is obtained, with spontaneously broken SUSY and non degenerate energy spectrum.
We investigate self-adjoint extensions of the minimal Kirchhoff Laplacian on an infinite metric graph. More specifically, the main focus is on the relationship between graph ends and the space of self-adjoint extensions of the corresponding minimal K irchhoff Laplacian $mathbf{H}_0$. First, we introduce the notion of finite and infinite volume for (topological) ends of a metric graph and then establish a lower bound on the deficiency indices of $mathbf{H}_0$ in terms of the number of finite volume graph ends. This estimate is sharp and we also find a necessary and sufficient condition for the equality between the number of finite volume graph ends and the deficiency indices of $mathbf{H}_0$ to hold. Moreover, it turns out that finite volume graph ends play a crucial role in the study of Markovian extensions of $mathbf{H}_0$. In particular, we show that the minimal Kirchhoff Laplacian admits a unique Markovian extension exactly when every topological end of the underlying metric graph has infinite volume. In the case of finitely many finite volume ends (for instance, the latter includes Cayley graphs of a large class of finitely generated infinite groups) we are even able to provide a complete description of all Markovian extensions of $mathbf{H}_0$.
95 - Y. C. Liu , V. Wang , J. B. Lin 2021
The Fermi arcs of topological surface states in the three-dimensional multi-Weyl semimetals on surfaces by a continuum model are investigated systematically. We calculated analytically the energy spectra and wave function for bulk quadratic- and cubi c-Weyl semimetal with a single Weyl point. The Fermi arcs of topological surface states in Weyl semimetals with single- and double-pair Weyl points are investigated systematically. The evolution of the Fermi arcs of surface states variating with the boundary parameter is investigated and the topological Lifshitz phase transition of the Fermi arc connection is clearly demonstrated. Besides, the boundary condition for the double parallel flat boundary of Weyl semimetal is deduced with a Lagrangian formalism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا