ﻻ يوجد ملخص باللغة العربية
We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined
Supersymmetry (SUSY) has been proposed to be a central concept for the physics beyond the standard model and for a description of the strong interactions in the context of the AdS/CFT correspondence. A deeper understanding of these developments requi
We give a comparison of the spectrum of Yang-Mills theory in $D=3+1$, recently derived with a strong coupling expansion, with lattice data. We verify excellent agreement also for 2$^{++}$ glueball. A deep analogy with the $D=2+1$ case is obtained and
We use fractional and wrapped branes to describe perturbative and non-perturbative properties of N=1 super Yang-Mills living on their world-volume. (Talk given at the 1st Nordstrom Symposium, Helsinki, August 2003.)
The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only thr