ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-dual supersymmetric nonlinear sigma models

283   0   0.0 ( 0 )
 نشر من قبل Sergei Kuzenko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In four-dimensional N=1 Minkowski superspace, general nonlinear sigma models with four-dimensional target spaces may be realised in term of CCL (chiral and complex linear) dynamical variables which consist of a chiral scalar, a complex linear scalar and their conjugate superfields. Here we introduce CCL sigma models that are invariant under U(1) duality rotations exchanging the dynamical variables and their equations of motion. The Lagrangians of such sigma models prove to obey a partial differential equation that is analogous to the self-duality equation obeyed by U(1) duality invariant models for nonlinear electrodynamics. These sigma models are self-dual under a Legendre transformation that simultaneously dualises (i) the chiral multiplet into a complex linear one; and (ii) the complex linear multiplet into a chiral one. Any CCL sigma model possesses a dual formulation given in terms of two chiral multiplets. The U(1) duality invariance of the CCL sigma model proves to be equivalent, in the dual chiral formulation, to a manifest U(1) invariance rotating the two chiral scalars. Since the target space has a holomorphic Killing vector, the sigma model possesses a third formulation realised in terms of a chiral multiplet and a tensor multiplet. The family of U(1) duality invariant CCL sigma models includes a subset of N=2 supersymmetric theories. Their target spaces are hyper Kahler manifolds with a non-zero Killing vector field. In the case that the Killing vector field is triholomorphic, the sigma model admits a dual formulation in terms of a self-interacting off-shell N=2 tensor multiplet. We also identify a subset of CCL sigma models which are in a one-to-one correspondence with the U(1) duality invariant models for nonlinear electrodynamics. The target space isometry group for these sigma models contains a subgroup U(1) x U(1).



قيم البحث

اقرأ أيضاً

We consider a four dimensional generalized Wess-Zumino model formulated in terms of an arbitrary K{a}hler potential $mathcal{K}(Phi,bar{Phi})$ and an arbitrary chiral superpotential $mathcal{W}(Phi)$. A general analysis is given to describe the possi ble interactions of this theory with external higher spin gauge superfields of the ($s+1,s+1/2$) supermultiplet via higher spin supercurrents. It is shown that such interactions do not exist beyond supergravity $(sgeq2)$ for any $mathcal{K}$ and $mathcal{W}$. However, we find three exceptions, the theory of a free massless chiral, the theory of a free massive chiral and the theory of a free chiral with linear superpotential. For the first two, the higher spin supercurrents are known and for the third one we provide the explicit expressions. We also discuss the lower spin supercurrents. As expected, a coupling to (non-minimal) supergravity ($s=1$) can always be found and we give the generating supercurrent and supertrace for arbitrary $mathcal{K}$ and $mathcal{W}$. On the other hand, coupling to the vector supermultiplet ($s=0$) is possible only if $mathcal{K}=mathcal{K}(bar{Phi}Phi)$ and $mathcal{W}=0$.
It is known that supersymmetric nonlinear sigma models for the compact Kahler manifolds G/H cannot be consistently coupled to supergravity, since the Kahler potentials are not invariant under the G transformation. We show that the supersymmetric nonl inear sigma models can be deformed such that the Kahler potential be exactly G-invariant if and only if one enlarges the manifolds by dropping all the U(1)s in the unbroken subgroup H. Then, those nonlinear sigma models can be coupled to supergravity without losing the G invariance.
We find a family of (half) self-dual impurity models such that the self-dual (BPS) sector is exactly solvable, for any spatial distribution of the impurity, both in the topologically trivial case and for kink (or antikink) configurations. This allows us to derive the metric on the corresponding one-dimensional moduli space in an analytical form. Also the generalized translational symmetry is found in an exact form. This symmetry provides a motion on moduli space which transforms one BPS solution into another. Finally, we analyse exactly how vibrational properties (spectral modes) of the BPS solutions depend on the actual position on moduli space. These results are obtained both for the nontrivial topological sector (kinks or antikinks) as well as for the topologically trivial sector, where the motion on moduli space represents a kink-antikink annihilation process.
147 - S. A. Fedoruk , E. A. Ivanov , 2012
We derive and discuss, at both the classical and the quantum levels, generalized N = 2 supersymmetric quantum mechanical sigma models describing the motion over an arbitrary real or an arbitrary complex manifold with extra torsions. We analyze the re levant vacuum states to make explicit the fact that their number is not affected by adding the torsion terms.
133 - L.A. Ferreira , Ya. Shnir 2017
We introduce a Skyrme type model with the target space being the 3-sphere S^3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those t wo terms are allowed to depend upon the space-time coordinates. The model should therefore be interpreted as an effective theory, such that those couplings correspond in fact to low energy expectation values of fields belonging to a more fundamental theory at high energies. The theory possesses a self-dual sector that saturates the Bogomolny bound leading to an energy depending linearly on the topological charge. The self-duality equations are conformally invariant in three space dimensions leading to a toroidal ansatz and exact self-dual Skyrmion solutions. Those solutions are labelled by two integers and, despite their toroidal character, the energy density is spherically symmetric when those integers are equal and oblate or prolate otherwise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا