ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetric Quantum Mechanics under Point Singularities

173   0   0.0 ( 0 )
 نشر من قبل Takashi Uchino
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a systematic study on the possibility of supersymmetry (SUSY) for one dimensional quantum mechanical systems consisting of a pair of lines $R$ or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at $x = pm l$ admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac $delta(x)$-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed.



قيم البحث

اقرأ أيضاً

285 - Ashok Das , H. Falomir , J. Gamboa 2008
General non-commutative supersymmetric quantum mechanics models in two and three dimensions are constructed and some two and three dimensional examples are explicitly studied. The structure of the theory studied suggest other possible applications in physical systems with potentials involving spin and non-local interactions.
The statistical model of crystal melting represents BPS configurations of D-branes on a toric Calabi-Yau three-fold. Recently it has been noticed that an infinite-dimensional algebra, the quiver Yangian, acts consistently on the crystal-melting confi gurations. We physically derive the algebra and its action on the BPS states, starting with the effective supersymmetric quiver quantum mechanics on the D-brane worldvolume. This leads to remarkable combinatorial identities involving equivariant integrations on the moduli space of the quantum mechanics, which can be checked by numerical computations.
68 - Georg Junker 2020
Relativistic arbitrary spin Hamiltonians are shown to obey the algebraic structure of supersymmetric quantum system if their odd and even parts commute. This condition is identical to that required for the exactness of the Foldy-Wouthuysen transforma tion. Applied to a massive charged spin-$1$ particle in a constant magnetic field, supersymmetric quantum mechanics necessarily requires a gyromagnetic factor $g=2$.
We consider the self-adjoint extensions (SAE) of the symmetric supercharges and Hamiltonian for a model of SUSY Quantum Mechanics in $mathbb{R}^+$ with a singular superpotential. We show that only for two particular SAE, whose domains are scale invar iant, the algebra of N=2 SUSY is realized, one with manifest SUSY and the other with spontaneously broken SUSY. Otherwise, only the N=1 SUSY algebra is obtained, with spontaneously broken SUSY and non degenerate energy spectrum.
201 - Jose L. Cortes , J. Gamboa 2020
An approach to study a generalization of the classical-quantum transition for general systems is proposed. In order to develop the idea, a deformation of the ladder operators algebra is proposed that contains a realization of the quantum group $SU(2) _q$ as a particular case. In this deformation Plancks constant becomes an operator whose eigenvalues approach $hbar $ for small values of $n$ (the eigenvalue of the number operator), and zero for large values of $n$ (the system is classicalized).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا