ﻻ يوجد ملخص باللغة العربية
We consider the higher order gravity with dilaton and with the leading string theory corrections taken into account. The domain wall type solutions are investigated for arbitrary number of space-time dimensions. The explicit formulae for the fixed points and asymptotic behavior of generic solutions are given. We analyze and classify solutions with finite effective gravitational constant. There is a class of such solutions which have no singularities. We discuss in detail the relation between fine tuning and self tuning and clarify in which sense our solutions are fine-tuning free. The stability of such solutions is also discussed.
We present a higher order generalisation of the clockwork mechanism starting from an underlying non-linear multigravity theory with a single scale and nearest neighbour ghost-free interactions. Without introducing any hierarchies in the underlying po
We find new, simple cosmological solutions with flat, open, and closed spatial geometries, contrary to the previous wisdom that only the open model is allowed. The metric and the St{u}ckelberg fields are given explicitly, showing nontrivial configura
We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in arXiv:1107.1217, which gave rise to a Type-D
We consider a class of higher order corrections with arbitrary power $n$ of the curvature tensor to the standard gravity action in arbitrary space-time dimension $D$. The corrections are in the form of Euler densities and are unique at each $n$ and $
We consider genuine type IIB string theory (supersymmetric) brane intersections that preserve $(1+1)$D Lorentz symmetry. We provide the full supergravity solutions in their analytic form and discuss their physical properties. The Ansatz for the space