ﻻ يوجد ملخص باللغة العربية
We extend a recent computation of the dependence of the free energy, F, on the noncommutative scale $theta$ to theories with very different UV sensitivity. The temperature dependence of $F$ strongly suggests that a reduced number of degrees of freedom contributes to the free energy in the non-planar sector, $F_{rm np}$, at high temperature. This phenomenon seems generic, independent of the UV sensitivity, and can be traced to modes whose thermal wavelengths become smaller than the noncommutativity scale. The temperature dependence of $F_{rm np}$ can then be calculated at high temperature using classical statistical mechanics, without encountering a UV catastrophe even in large number of dimensions. This result is a telltale sign of the low number of degrees of freedom contributing to $F$ in the non-planar sector at high temperature. Such behavior is in marked contrast to what would happen in a field theory with a random set of higher derivative interactions.
We clearly formulate and study further a conjecture of effective field theory interaction with gravity in the cosmological context. The conjecture stems from the fact that the melding of quantum theory and gravity typically indicates the presence of
By combining the jet quenching Monte Carlo JEWEL with a realistic hydrodynamic model for the background we investigate the sensitivity of jet observables to details of the medium model and quantify the influence of the energy and momentum lost by jet
FeSe is classed as a Hunds metal, with a multiplicity of $d$ bands near the Fermi level. Correlations in Hunds metals mostly originate from the exchange parameter emph{J}, which can drive a strong orbital selectivity in the correlations. The Fe-chalc
The spinor-helicity formalism has proven to be very efficient in the calculation of scattering amplitudes in quantum field theory, while the loop tree duality (LTD) representation of multi-loop integrals exhibits appealing and interesting advantages
1$T$-TaSe$_{2}$ is host to coexisting strongly-correlated phases including charge density waves (CDWs) and an unusual Mott transition at low temperature. Here, we investigate coherent phonon oscillations in 1$T$-TaSe$_{2}$ using a combination of time