ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological interplay between general relativity and particle physics

134   0   0.0 ( 0 )
 نشر من قبل Michael Maziashvili
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We clearly formulate and study further a conjecture of effective field theory interaction with gravity in the cosmological context. The conjecture stems from the fact that the melding of quantum theory and gravity typically indicates the presence of an inherent UV cutoff. Taking note of the physical origin of this UV cutoff, that the background metric fluctuations does not allow QFT to operate with a better precision than the background space resolution, we conjecture that the converse statement might also be true. That is, an effective field theory could not perceive the background space with a better precision than it is allowed by its intrinsic UV scale. Some of the subtleties and cosmological implications of this conjecture are explored.



قيم البحث

اقرأ أيضاً

Einsteins theory of gravity, General Relativity, has been precisely tested on Solar System scales, but the long-range nature of gravity is still poorly constrained. The nearby strong gravitational lens, ESO 325-G004, provides a laboratory to probe th e weak-field regime of gravity and measure the spatial curvature generated per unit mass, $gamma$. By reconstructing the observed light profile of the lensed arcs and the observed spatially resolved stellar kinematics with a single self-consistent model, we conclude that $gamma = 0.97 pm 0.09$ at 68% confidence. Our result is consistent with the prediction of 1 from General Relativity and provides a strong extragalactic constraint on the weak-field metric of gravity.
We provide a novel, concise and self-contained evaluation of true- and false vacuum decay rates in general relativity. We insist on general covariance and choose observable boundary conditions, which yields the well known false-vacuum decay rate and a new true-vacuum decay rate that differs significantly from prior work. The rates of true- and false vacuum decays are identical in general relativity. The second variation of the action has a negative mode for all parameters. Our findings imply a new perspective on cosmological initial conditions and the ultimate fate of our universe.
In this work, we revisit the non-minimally coupled Higgs Inflation scenario and investigate its observational viability in light of the current Cosmic Microwave Background, Baryon Acoustic Oscillation and type Ia Supernovae data. We explore the effec ts of the Coleman-Weinberg approximation to the Higgs potential in the primordial universe, connecting the predictions for the Lagrangian parameters at inflationary scales to the electroweak observables through Renormalization Group methods at two-loop order. As the main result, we find that observations on the electroweak scale are in disagreement with the constraints obtained from the cosmological data sets used in the analysis. Specifically, an $approx 8sigma$-discrepancy between the inflationary parameters and the electroweak value of the top quark mass is found, which suggests that a significant deviation from the scenario analysed is required by the cosmological data.
107 - Andrei Linde 2016
I show that the problem of realizing inflation in theories with random potentials of a limited number of fields can be solved, and agreement with the observational data can be naturally achieved if at least one of these fields has a non-minimal kinet ic term of the type used in the theory of cosmological $alpha$-attractors.
We extend a recent computation of the dependence of the free energy, F, on the noncommutative scale $theta$ to theories with very different UV sensitivity. The temperature dependence of $F$ strongly suggests that a reduced number of degrees of freedo m contributes to the free energy in the non-planar sector, $F_{rm np}$, at high temperature. This phenomenon seems generic, independent of the UV sensitivity, and can be traced to modes whose thermal wavelengths become smaller than the noncommutativity scale. The temperature dependence of $F_{rm np}$ can then be calculated at high temperature using classical statistical mechanics, without encountering a UV catastrophe even in large number of dimensions. This result is a telltale sign of the low number of degrees of freedom contributing to $F$ in the non-planar sector at high temperature. Such behavior is in marked contrast to what would happen in a field theory with a random set of higher derivative interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا