ﻻ يوجد ملخص باللغة العربية
The energy evolution of average multiplicities of quark and gluon jets is studied in perturbative QCD. Higher order (3NLO) terms in the perturbative expansion of equations for the generating functions are found. First and second derivatives of average multiplicities are calculated. The mean multiplicity of gluon jets is larger than that of quark jets and evolves more rapidly with energy. It is shown which quantities are most sensitive to higher order perturbative and nonperturbative corrections. We define the energy regions where the corrections to different quantities are important. The latest experimental data are discussed.
Recent developments and results on the comparison of gluon to quark jets are discussed. A most important topic is the introduction of explicit energy scales of the jets. The scaling violation of the fragmentation function and the increase of the mult
This is a summary of the latest results of the DELPHI Collaboration on the properties of identified quark and gluon jets. It covers the measurement of the fragmentation functions of gluons and quarks and their scaling violation behaviour as well as a
We measure the subjet multiplicity M in jets reconstructed with a successive combination type of jet algorithm (kT). We select jets with 55<pT<100 GeV and |eta|<0.5. We compare similar samples of jets at sqrt(s)=1800 and 630 GeV. The HERWIG Monte Car
We propose a system of evolution equations that describe in-medium time-evolution of transverse-momentum-dependent quark and gluon fragmentation functions. Furthermore, we solve this system of equations using Monte Carlo methods. We use the obtained
We review free energy evolution of QGP (Quark-gluon plasma) under zero-loop, one loop and two loop corrections in the mean field potential. The free energies of QGP under the comparison of zero-loop and loop corrections of the interacting potential a