ﻻ يوجد ملخص باللغة العربية
We measure the subjet multiplicity M in jets reconstructed with a successive combination type of jet algorithm (kT). We select jets with 55<pT<100 GeV and |eta|<0.5. We compare similar samples of jets at sqrt(s)=1800 and 630 GeV. The HERWIG Monte Carlo simulation predicts that 59% of the jets are gluon jets at sqrt(s)=1800 GeV, and 33% at sqrt(s)=630 GeV. Using this information, we extract the subjet multiplicity in quark (Mq) and gluon (Mg) jets. We also measure the ratio R= (<Mg> -1)/(<Mq>-1)= 1.84 +- 0.15(stat) +0.22-0.18(sys).
Recent developments and results on the comparison of gluon to quark jets are discussed. A most important topic is the introduction of explicit energy scales of the jets. The scaling violation of the fragmentation function and the increase of the mult
We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small
We present details of a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ~90 pb^-1 of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DZero
We report a measurement of the fraction of top quark pair events produced via gluon-gluon fusion in $pbar{p}$ collisions at $sqrt{s} = 1.96 ~rm TeV$ in lepton+jets final states using the full RunII data set corresponding to $9.7 ~rm fb^{-1}$ of integ
This is a summary of the latest results of the DELPHI Collaboration on the properties of identified quark and gluon jets. It covers the measurement of the fragmentation functions of gluons and quarks and their scaling violation behaviour as well as a