ترغب بنشر مسار تعليمي؟ اضغط هنا

A new global analysis of deep inelastic scattering data

90   0   0.0 ( 0 )
 نشر من قبل Vincenzo Barone
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new QCD analysis of Deep Inelastic Scattering (DIS) data is presented. All available neutrino and anti-neutrino cross sections are reanalysed and included in the fit, along with charged-lepton DIS and Drell-Yan data. A massive factorisation scheme is used to describe the charm component of the structure functions. Next-to-leading order parton distribution functions are provided. In particular, the strange sea density is determined with a higher accuracy with respect to other global fits.



قيم البحث

اقرأ أيضاً

We analyse the newest diffractive deep inelastic scattering data from the DESY collider HERA with the help of dipole models. We find good agreement with the data on the diffractive structure functions provided the diffractive open charm contribution is taken into account. However, the region of large diffractive mass (small values of a parameter beta) needs some refinement with the help of an additional gluon radiation.
71 - W.K. Tung , H.L. Lai , A. Belyaev 2006
A new implementation of the general PQCD formalism of Collins, including heavy quark mass effects, is described. Important features that contribute to the accuracy and efficiency of the calculation of both neutral current (NC) and charged current (CC ) processess are explicitly discussed. This new implementation is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, with correlated systematic errors, in conjunction with the usual fixed-target and hadron collider data sets. By using a variety of parametrizations to explore the parton parameter space, robust new parton distribution function (PDF) sets (CTEQ6.5) are obtained. The new quark distributions are consistently higher in the region x ~ 10^{-3} than previous ones, with important implications on hadron collider phenomenology, especially at the LHC. The uncertainties of the parton distributions are reassessed and are compared to the previous ones. A new set of CTEQ6.5 eigenvector PDFs that encapsulates these uncertainties is also presented.
373 - E. Leader 1997
We have carried out a NLO analysis of the world data on polarized DIS in the MS/bare scheme. We have studied two models of the parametrizations of the input parton densities, the first due to Brodsky, Burkhardt and Schmidt (BBS) which gives a simulta neous parametrization for both the polarized and unpolarized densities and in which the counting rules are strictly imposed, the second in which the input polarized densities are written in terms of the unpolarized ones in the generic form Deltaq(x)=f(x)q(x) with f(x) some simple smooth function. In both cases a good fit to the polarized data is achieved. As expected the polarized data do not allow a precise determination of the polarized gluon density. Concerning the polarized sea-quark densities, these are fairly well determined in the BBS model because of the interplay of polarized and unpolarized data, whereas in the second model, where only the polarized data are relevant, the polarized sea-quark densities are largely undetermined.
Parton distributions can be defined in terms of the entropy of entanglement between the spatial region probed by deep inelastic scattering (DIS) and the rest of the proton. For very small $x$, the proton becomes a maximally entangled state. This appr oach leads to a simple relation $S = ln N $ between the average number $N$ of color-singlet dipoles in the proton wave function and the entropy of the produced hadronic state $S$. At small $x$, the multiplicity of dipoles is given by the gluon structure function, $N = x G(x,Q^2)$. Recently, the H1 Collaboration analyzed the entropy of the produced hadronic state in DIS, and studied its relation to the gluon structure function; poor agreement with the predicted relation was found. In this letter we argue that a more accurate account of the number of color-singlet dipoles in the kinematics of H1 experiment (where hadrons are detected in the current fragmentation region) is given not by $xG(x,Q^2)$ but by the sea quark structure function $xSigma(x,Q^2)$. Sea quarks originate from the splitting of gluons, so at small $x$ $xSigma(x,Q^2),sim, xG(x,Q^2)$, but in the current fragmentation region this proportionality is distorted by the contribution of the quark-antiquark pair produced by the virtual photon splitting. In addition, the multiplicity of color-singlet dipoles in the current fragmentation region is quite small, and one needs to include $sim 1/N$ corrections to $S= ln N$ asymptotic formula. Taking both of these modifications into account, we find that the data from the H1 Collaboration in fact agree well with the prediction based on entanglement.
We present our QCD analysis of the proton structure function $F_2^p(x,Q^2)$ to determine the parton distributions at the next-to-leading order (NLO). The heavy quark contributions to $F_2^i(x,Q^2)$, with $i$ = $c$, $b$ have been included in the frame work of the `fixed flavour number scheme (FFNS). The results obtained in the FFNS are compared with available results such as the general-mass variable-flavour-number scheme (GM-VFNS) and other prescriptions used in global fits of PDFs. In the present QCD analysis, we use a wide range of the inclusive neutral-current deep-inelastic-scattering (NC DIS) data, including the most recent data for charm $F_2^c$, bottom $F_2^b$, longitudinal $F_L$ structure functions and also the reduced DIS cross sections $sigma_{r,NC}^pm$ from HERA experiments. The most recent HERMES data for proton and deuteron structure functions are also added. We take into account ZEUS neutral current $e^ pm p$ DIS inclusive jet cross section data from HERA together with the recent Tevatron Run-II inclusive jet cross section data from CDF and D{O}. The impact of these recent DIS data on the PDFs extracted from the global fits are studied. We present two families of PDFs, {tt KKT12} and {tt KKT12C}, without and with HERA `combined data sets on $e^{pm}p$ DIS. We find these are in good agreement with the available theoretical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا