ﻻ يوجد ملخص باللغة العربية
Parton distributions can be defined in terms of the entropy of entanglement between the spatial region probed by deep inelastic scattering (DIS) and the rest of the proton. For very small $x$, the proton becomes a maximally entangled state. This approach leads to a simple relation $S = ln N $ between the average number $N$ of color-singlet dipoles in the proton wave function and the entropy of the produced hadronic state $S$. At small $x$, the multiplicity of dipoles is given by the gluon structure function, $N = x G(x,Q^2)$. Recently, the H1 Collaboration analyzed the entropy of the produced hadronic state in DIS, and studied its relation to the gluon structure function; poor agreement with the predicted relation was found. In this letter we argue that a more accurate account of the number of color-singlet dipoles in the kinematics of H1 experiment (where hadrons are detected in the current fragmentation region) is given not by $xG(x,Q^2)$ but by the sea quark structure function $xSigma(x,Q^2)$. Sea quarks originate from the splitting of gluons, so at small $x$ $xSigma(x,Q^2),sim, xG(x,Q^2)$, but in the current fragmentation region this proportionality is distorted by the contribution of the quark-antiquark pair produced by the virtual photon splitting. In addition, the multiplicity of color-singlet dipoles in the current fragmentation region is quite small, and one needs to include $sim 1/N$ corrections to $S= ln N$ asymptotic formula. Taking both of these modifications into account, we find that the data from the H1 Collaboration in fact agree well with the prediction based on entanglement.
We study the use of deep learning techniques to reconstruct the kinematics of the deep inelastic scattering (DIS) process in electron-proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, a
A new QCD analysis of Deep Inelastic Scattering (DIS) data is presented. All available neutrino and anti-neutrino cross sections are reanalysed and included in the fit, along with charged-lepton DIS and Drell-Yan data. A massive factorisation scheme
The energy-energy correlator (EEC) is an event shape observable which probes the angular correlations of energy depositions in detectors at high energy collider facilities. It has been investigated extensively in the context of precision QCD. In this
We study the lepton-jet correlation in deep inelastic scattering. We perform one-loop calculations for the spin averaged and transverse spin dependent differential cross sections depending on the total transverse momentum of the final state lepton an
We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron