ﻻ يوجد ملخص باللغة العربية
We study the neutrino-photon processes such as $gammagammato ubar{ u}$ and $ ugammato ugamma$ in a background magnetic field smaller than the critical magnetic field $B_cequiv m_e^2/e$. Using Schwingers proper-time method, we extract leading magnetic-field contributions to the above processes. Our result is valid throughout the kinematic regime where both neutrino and photon energies are significantly smaller than $m_W$. We briefly discuss the astrophysical implications of our result.
The weak-field expansion of the charged fermion propagator under a uniform magnetic field is studied. Starting from Schwingers proper-time representation, we express the charged fermion propagator as an infinite series corresponding to different Land
We examine the analytic properties of the photon polarization function in a background magnetic field, using the technique of inverse Mellin transform. The photon polarization function is first expressed as a power series of the photon energy $omega$
We develop the technique of inverse Mellin transform for processes occurring in a background magnetic field. We show by analyticity that the energy (momentum) derivatives of a field theory amplitude at the zero energy (momentum) is equal to the Melli
Using holography, we analyse deep inelastic scattering of a flavor current from a strongly coupled quark-gluon plasma with a background magnetic field. The aim is to show how the magnetic field affects the partonic picture of the plasma. The flavored
The processes of neutrino production of electron-positron pairs, $ u bar u to e^- e^+$ and $ u to u e^- e^+$, in a magnetic field of arbitrary strength, where electrons and positrons can be created in the states corresponding to excited Landau level