ﻻ يوجد ملخص باللغة العربية
Using holography, we analyse deep inelastic scattering of a flavor current from a strongly coupled quark-gluon plasma with a background magnetic field. The aim is to show how the magnetic field affects the partonic picture of the plasma. The flavored constituents of the plasma are described using D3-D7 brane model at finite temperature. We find that the presence of a background magnetic field makes it harder to detect the plasma constituents. Our calculations are in agreement with those calculated from other approaches. Besides the resulting changes for plasma structure functions a criteria will be obtained for the possibility of deep inelastic process in the presence of magnetic field.
We consider Deep Inelastic Scattering (DIS) thought experiments in unitary Conformal Field Theories (CFTs). We explore the implications of the standard dispersion relations for the OPE data. We derive positivity constraints on the OPE coefficients of
It is shown that in semi-inclusive deep inelastic scattering (DIS) of electrons off a complex nucleus A, the detection, in coincidence with the scattered electron, of a nucleus (A-1) in the ground state, as well as of a nucleon and a nucleus (A-2), a
In this paper, we study charged current deep inelastic scattering of muon neutrinos off ^{56}Fe nuclei using Hirai, Kumano and Saito model. The LHA Parton Distribution Functions (PDFs) - CT10 are used to describe the partonic content of hadrons. Modi
We study large $N$ 2+1 dimensional fermions in the fundamental representation of an $SU(N)_k$ Chern Simons gauge group in the presence of a uniform background magnetic field for the $U(1)$ global symmetry of this theory. The magnetic field modifies t
We consider deep inelastic scattering (DIS) on a nucleus described using a density expansion. In leading order, the scattering is dominated by the incoherent scattering on individual nucleons distributed using the Thomas-Fermi approximation. We use t