ﻻ يوجد ملخص باللغة العربية
The precision of new HERA data on jet photoproduction opens up the possibility to discriminate between different models of the photon structure. This requires equally precise theoretical predictions from perturbative QCD calculations. In the past years, next-to-leading order calculations for the photoproduction of jets at HERA have become available. Using the kinematic cuts of recent ZEUS analyses, we compare the predictions of three calculations for different dijet and three-jet distributions. We find that in general all three calculations agree within the statistical accuracy of the Monte Carlo integration yielding reliable theoretical predictions. In certain restricted regions of phase space, the calculations differ by up to 5%.
Jets constructed via clustering algorithms (e.g., anti-$k_T$, soft-drop) have been proposed for many precision measurements, such as the strong coupling $alpha_s$ and the nucleon intrinsic dynamics. However, the theoretical accuracy is affected by mi
Using BlackHat in conjunction with SHERPA, we have computed next-to-leading order QCD predictions for a variety of distributions in Z,gamma*+1,2,3-jet production at the Tevatron, where the Z boson or off-shell photon decays into an electron-positron
Deep inelastic scattering (DIS) total cross section data at small-x as measured by the HERA experiments is well described by Balitsky-Kovchegov (BK) evolution in the leading order dipole picture. Recently the full Next-to-Leading Order (NLO) dipole p
We calculate the cross section of diffractive dijet photoproduction in $ep$ scattering at next-to-leading order (NLO) of perturbative QCD (pQCD), which we supplement by a model of factorization breaking for the resolved-photon contribution. In this m
We compute various kinematical distributions for one-jet and two-jet inclusive photoproduction at HERA. Our results are accurate to next-to-leading order in QCD. We use the subtraction method for the cancellation of infrared singularities. We perform