ﻻ يوجد ملخص باللغة العربية
Using BlackHat in conjunction with SHERPA, we have computed next-to-leading order QCD predictions for a variety of distributions in Z,gamma*+1,2,3-jet production at the Tevatron, where the Z boson or off-shell photon decays into an electron-positron pair. We find good agreement between the NLO results for jet p_T distributions and measurements by CDF and D0. We also present jet-production ratios, or probabilities of finding one additional jet. As a function of vector-boson p_T, the ratios have distinctive features which we describe in terms of a simple model capturing leading logarithms and phase-space and parton-distribution-function suppression.
Jets constructed via clustering algorithms (e.g., anti-$k_T$, soft-drop) have been proposed for many precision measurements, such as the strong coupling $alpha_s$ and the nucleon intrinsic dynamics. However, the theoretical accuracy is affected by mi
The precision of new HERA data on jet photoproduction opens up the possibility to discriminate between different models of the photon structure. This requires equally precise theoretical predictions from perturbative QCD calculations. In the past yea
We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino in
The relation between the specific shear viscosity $eta/s$ and the dimensionless jet quenching parameter $hat{q}/T^3$ in perturbative QCD is explored at next-to-leading order in the coupling constant. It is shown that the relation changes little, alth
Predictions for angular distributions of top quark decay products that are sensitive to t tbar spin correlations are presented at next-to-leading order in alpha_s for the Tevatron and the LHC.