ﻻ يوجد ملخص باللغة العربية
We present the full O(alpha_s) longitudinal spin-spin correlations for heavy-quark pair production at e+ e- high-energy colliders in closed analytical form. In such reactions, quark and antiquark have strongly correlated spins, and the longitudinal components are dominant. For the explicit computation of the QCD bremsstrahlung contributions, new phase-space integrals are derived. Explicit numerical estimates are given for t t_bar and b b_bar production. Around the Z-peak, QCD one-loop corrections depolarize the spin-spin asymmetry for bottom quark pairs by approximately -4%. For top pair production, we find at 350GeV a 0.6% increased polarization over a value of 0.4 in the longitudinal correlation. For more than 1 TeV the O(alpha_s) corrections enhance depolarization to -2% in the top-pair case.
We present a new derivation of the O(alpha_s) angular distribution of the outgoing $q$-quark in the production process $e^+ e^- togamma,Zto q,bar{q}(g)$. In our calculation, we express the three-particle phase-space integration of the gluon-bremsstra
We present a detailed investigation of the NLO polarization of the top quark in t t-bar production at a polarized linear e^+ e^- collider with longitudinally polarized beams. By appropiately tuning the polarization of the beams one can achieve close
The massive one-loop {it QCD} corrections to the production cross sections of We present the massive one-loop {it QCD} corrections to the production cross sections of polarized quarks in the annihilation process $e^+e^-to qbar{q}(g)$ for bottom, top,
In this talk I first present a short review of fluctuations in $e^+e^-$-annihilations. I then describe some new results on FD correlations. Experimental analyses of $pp$ and $LambdaLambda$ correlations indicate a very small production radius. This re
We point out that the fragmentation of a strange quark into nucleons versus antinucleons is not necessarily identical $D_{p/s}(z,Q^2) eq D_{bar p/s}(z,Q^2)$, even though the perturbative contributions from gluon splitting and evolution are $p leftri