ﻻ يوجد ملخص باللغة العربية
We analyze $D to P V$, $D to PP$ and $D to VV$ decays within a model developed to describe the semileptonic decays $D to V l u_l$ and $Dto P l u_l$. This model combines the heavy quark effective Lagrangian and chiral perturbation theory. We determine amplitudes for decays in which the direct weak annihilation of the initial $D$ meson is absent or negligible, and in which the final state interactions are small. This analysis reduces the arbitrariness in the choice of model parameters. The calculated decay widths are in good agreement with the experimental results.
We analyze charm meson semileptonic $D to V l u_l$ and $Dto P l u_l$ and nonleptonic $D to P V$, $D to PP$ and $D to VV$ decays within a model which combines the heavy quark effective Lagrangian and chiral perturbation theory.
A previous analysis of two-body Cabibbo allowed nonleptonic decays of $D^0$ mesons and of Cabibbo allowed and first-forbidden decays of $D^+$ and $D_s^+$ has been adjourned using more recent experimental data and extended to the Cabibbo forbidden dec
In this contribution we compute some nonleptonic and semileptonic decay widths of $B_s$ mesons, working in the context of constituent quark models cite{Albertus:2014gba, Albertus:2014bfa}. For the case of semileptonic decays we consider reactions lea
The semileptonic decays and two-body nonleptonic decays of light baryon octet ($T_8$) and decuplet ($T_{10}$) consisting of light $u,d,s$ quarks are studied with the SU(3) flavor symmetry in this work. We obtain the amplitude relations between differ
B meson semileptonic decays are a crucial tool in our studies of the quark mixing parameters Vcb and Vub. The interplay between experimental and theoretical challenges to achieve precision in the determination of these fundamental parameters is discussed.