ترغب بنشر مسار تعليمي؟ اضغط هنا

B meson semileptonic decays

98   0   0.0 ( 0 )
 نشر من قبل Marina Artuso
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف Marina Artuso




اسأل ChatGPT حول البحث

B meson semileptonic decays are a crucial tool in our studies of the quark mixing parameters Vcb and Vub. The interplay between experimental and theoretical challenges to achieve precision in the determination of these fundamental parameters is discussed.



قيم البحث

اقرأ أيضاً

We study the exclusive semileptonic $B$-meson decays $Bto K(pi)ell^+ell^-$, $Bto K(pi) ubar u$, and $Btopitau u$, computing observables in the Standard model using the recent lattice-QCD results for the underlying form factors from the Fermilab Latti ce and MILC Collaborations. These processes provide theoretically clean windows into physics beyond the Standard Model because the hadronic uncertainties are now under good control for suitably binned observables. For example, the resulting partially integrated branching fractions for $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ outside the charmonium resonance region are 1-2$sigma$ higher than the LHCb Collaborations recent measurements, where the theoretical and experimental errors are commensurate. The combined tension is 1.7$sigma$. Combining the Standard-Model rates with LHCbs measurements yields values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_{td}|=7.45{(69)}times10^{-3}$, $|V_{ts}|=35.7(1.5)times10^{-3}$, and $|V_{td}/V_{ts}|=0.201{(20)}$, which are compatible with the values obtained from neutral $B_{(s)}$-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from unitarity, we constrain new-physics contributions at the electroweak scale. The constraints on the Wilson coefficients ${rm Re}(C_9)$ and ${rm Re}(C_{10})$ from $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ are competitive with those from $Bto K^* mu^+mu^-$, and display a 2.0$sigma$ tension with the Standard Model. Our predictions for $Bto K(pi) ubar u$ and $Btopitau u$ are close to the current experimental limits.
Two of the elements of the Cabibbo-Kobayashi-Maskawa quark mixing matrix, $|V_{ub}|$ and $|V_{cb}|$, are extracted from semileptonic B decays. The results of the B factories, analysed in the light of the most recent theoretical calculations, remain p uzzling, because for both $|V_{ub}|$ and $|V_{cb}|$ the exclusive and inclusive determinations are in clear tension. Further, measurements in the $tau$ channels at Belle, Babar, and LHCb show discrepancies with the Standard Model predictions, pointing to a possible violation of lepton flavor universality. LHCb and Belle II have the potential to resolve these issues in the next few years. This article summarizes the discussions and results obtained at the MITP workshop held on April 9--13, 2018, in Mainz, Germany, with the goal to develop a medium-term strategy of analyses and calculations aimed at solving the puzzles. Lattice and continuum theorists working together with experimentalists have discussed how to reshape the semileptonic analyses in view of the much higher luminosity expected at Belle II, searching for ways to systematically validate the theoretical predictions in both exclusive and inclusive B decays, and to exploit the rich possibilities at LHCb.
We review the two and three-body baryonic $B$ decays with the dibaryon (${bf Bbar B}$) as the final states. Accordingly, we summarize the experimental data of the branching fractions, angular asymmetries, and $CP$ asymmetries. In the approach of pert urbative QCD counting rules, we study the three-body decay channels. Using the $W$-boson annihilation (exchange) mechanism, the branching fractions of $Bto {bf B bf bar B}$ are shown to be interpretable. In particular, we review the $CP$ asymmetries of $Bto {bf Bbar B}M$, which are promising to be measured by the LHCb and Belle II experiments.
We report the status of an ongoing lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$ mesons with both charged currents ($Btopiell u$, $B_sto Kell u$) and neutral currents ($Btopiell^+ell^-$, $Bto Kell^+ell^-$). The resu lts are important for constraining or revealing physics beyond the Standard Model. This work uses MILCs (2+1+1)-flavor ensembles with the HISQ action for the sea and light valence quarks and the clover action in the Fermilab interpretation for the $b$ quark. Simulations are carried out at three lattice spacings down to $0.088$ fm, with both physical and unphysical sea-quark masses. We present preliminary results for correlation-function fits.
We study the semileptonic decays of $B_c$ meson to S-wave charmonium states in the framework of relativistic independent quark model based on an average flavor-independent confining potential $U(r)$ in the scalar-vector harmonic form $U(r)=frac{1}{2} (1+gamma^0)(ar^2+V_0)$, where ($a$, $V_0$) are the potential parameters.The form factors for $B_c^+to eta_c /psi e^+ u_e$ transitions are studied in the physical kinematic range. Our predicted branching ratios (BR) for transitions to ground state charmonia are found comparatively large $sim $ $10^{-2}$, compared to those for transitions to radially excited 2S and 3S states. Like all other mpdel predictions, our predicted BR are obtained in the hierarchy: BR($B_c^+to eta_c /psi (3S)$) $<$ BR($B_c^+to eta_c/ psi (2S)$) $<$ BR($B_c^+to eta_c /psi (1S)$). The longitudinal ($Gamma_L$) and transverse polarization ($Gamma_T$) for $B_c to psi(ns)$ decay modes are predicted in the small and large $q^2$ - region as well as in the whole physical region. The ratios for such transitions are obtained $frac {Gamma_L}{Gamma_T} < 1$ throughout the kinematic range which means the $B_c^+$ meson transitions to vector meson charmonium states take place predominantly in transverse polarization mode. The theoretical predictions on these transitions could be tested in the on-going and forthcoming experiments at LHCb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا