ﻻ يوجد ملخص باللغة العربية
We examine the effects of a scalar field, coupled only to neutrinos, on oscillations among weak interaction current eigenstates. The existence of a real scalar field is manifested as effective masses for the neutrino mass eigenstates, the same for $ bar$ as for $ $. Under some conditions, this can lead to a vanishing of $delta m^2$, giving rise to MSW-like effects. We present an idealized example and show that it may be possible to resolve the apparent discrepancy in spectra required by r-process nucleosynthesis in the mantles of supernovae and by Solar neutrino solutions.
We analyze the existing solar neutrino experiment data and show the allowed regions. The result from SNOs salt phase itself restricts quite a lot the allowed regions area. Reactor neutrinos play an important role in determining oscillation parameters
The existence of dark matter particles that carry phenomenologically relevant self-interaction cross sections mediated by light dark sector states is considered to be severely constrained through a combination of experimental and observational data.
We present a theory of neutrino oscillations in a dense medium which goes beyond the effective matter potential used in the description of the MSW effect. We show how the purity of the neutrino state is degraded by neutrino interactions with the envi
We review the propagation of light neutrinos in matter assuming that their mixing with heavy neutrinos is close to present experimental limits. The phenomenological implications of the non-unitarity of the light neutrino mixing matrix for neutrino os
We propose a model to explain tiny masses of neutrinos with the lepton number conservation, where neither too heavy particles beyond the TeV-scale nor tiny coupling constants are required. Assignments of conserving lepton numbers to new fields result