ﻻ يوجد ملخص باللغة العربية
We present a theory of neutrino oscillations in a dense medium which goes beyond the effective matter potential used in the description of the MSW effect. We show how the purity of the neutrino state is degraded by neutrino interactions with the environment and how neutrino--matter interactions can be a source of decoherence. We present new oscillation formulae for neutrinos interacting with leptons and carry out a numerical analysis which exhibits deviations from the MSW formulae for propagation through the Earth of ultra-high energy neutrinos. In particular, we show that at high density and/or high neutrino energy, the vanishing transition probabilities derived for MSW effect, are non zero when the scattering is taken into account.
We consider Dirac neutrinos interacting with background fermions in the frame of the standard model. We demonstrate that a time-dependent effective potential is quite possible in a protoneutron star (PNS) at certain stages of its evolution. For the f
Assuming that at sufficiently high densities the constituent quarks become relevant degrees of freedom, we study within the framework of a chiral quark model the influence of s-wave $K^-$ condensation on the quark-antiquark condensates. We find that,
We investigate the stability of the pion string in a thermal bath and a dense medium. We find that stability is dependent on the order of the chiral transition. String core stability within the experimentally allowed regime is found only if the chira
We report recent results on the dynamics of strange hadrons in two-body reactions relevant for near-threshold production in heavy-ion collisions at GSI/FAIR and NICA-Dubna. In particular, $bar K N$ scattering in hot and dense nuclear matter is studie
In this article, we have explored the very important quantity of lepton pair production from a hot and dense QCD medium in presence of an arbitrary magnetic field for simultaneous nonzero values of both the parallel and perpendicular components of mo