ﻻ يوجد ملخص باللغة العربية
We discuss the lower limit on the mass of the neutralino $chi$ that can be obtained by combining data from $e^+e^-$ annihilation at LEP and elsewhere with astrophysical and theoretical considerations. Loopholes in the purely experimental analysis of ALEPH data from the Z peak and LEP 1.5, which appear when $mu<0$ for certain values of the sneutrino mass $m_{tilde u}$ and the ratio $tanbeta$ of supersymmetric Higgs vacuum expectation values, may be largely or totally excluded by data from lower-energy $e^+e^-$ data, the hypothesis that most of the cosmological dark matter consists of $chi$ particles, and the assumption that electroweak symmetry breaking is triggered by radiative corrections due to a heavy top quark. The combination of these inputs imposes $m_{chi} ge 21.4~gev$, if soft supersymmetry-breaking masses are assumed to be universal at the grand-unification scale.
In this work we study a scalar field dark matter model with mass of the order of 100 MeV. We assume dark matter is produced in the process $e^-+e^+to phi +phi^*+gamma$, that, in fact, could be a background for the standard process $e^-+e^+to u +bar
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics
We propose a self-interacting inelastic dark matter (DM) scenario as a possible origin of the recently reported excess of electron recoil events by the XENON1T experiment. Two quasi-degenerate Majorana fermion DM interact within themselves via a ligh
We explore a novel possibility that dark matter has a light mass below 1GeV in a lepton portal dark matter model. There are Yukawa couplings involving dark matter, left-handed leptons and an extra scalar doublet in the model. In the light mass region
The low-energy electronic recoil spectrum in XENON1T provides an intriguing hint for potential new physics. At the same time, observations of horizontal branch stars favor the existence of a small amount of extra cooling compared to the one expected