ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton lifetime, Yukawa couplings and dynamical SUSY breaking in SU(5) GUT

69   0   0.0 ( 0 )
 نشر من قبل Cai-dian Lu
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the influence of messenger Yukawa couplings and top, bottom and $tau$ Yukawa couplings on the proton lifetime in SU(5) Supersymmetric GUT with dynamical supersymmetry breaking mechanism due to Dine and Nelson.



قيم البحث

اقرأ أيضاً

116 - G.K. Leontaris 2011
The fermion mass textures are discussed in the context of F-theory SU(5) GUT. The tree-level up, down and charged lepton Yukawa couplings are computed in terms of the integrals of overlapping wavefunctions at the intersection points of three matter c urves. All remaining entries in the fermion mass matrices can also be reliably estimated from higher order non-renormalizable Yukawa couplings mediated by heavy string modes and/or Kaluza-Klein states.
We examine proton decay mediated by color-triplet Higgsinos in minimal supersymmetric $SU(5)$ grand unified theory in light of the discovery of the Higgs boson and the absence of SUSY signals at the LHC. We pay special attention to various threshold effects arising from Planck-suppressed operators that affect the color-triplet Higgsino mass and also correct the wrong mass relations for the light fermions. Our analysis allows for a non-universal SUSY spectrum with the third family scalars having a separate mass compared to the first two families. We identify the allowed parameter space of the model and show that the SUSY scalar masses are constrained by current limits from proton lifetime to be above 5 TeV, while the glunio, Wino and the Higgsinos may be within reach of the LHC. When the SUSY scalar masses are required to be $leq 20$ TeV, so that they are within reach of next generation collider experiments, we find that proton lifetime for the decay $p rightarrow overline{ u} K^+$ is bounded by $tau(p rightarrow overline{ u} K^+) leq 1.1 times 10^{35}$ yrs.
We propose a model with $A_4$ flavor symmetry for leptons and quarks in the framework of supersymmetric SU(5) grand unified theory (GUT). The running masses of quarks and charged leptons at GUT scale ($sim 10^{16}$ GeV) are realized by the adjoint 24 -dimensional Higgs multiplet and additional gauge singlet scalar fields including flavons. In this paper, we focus on a result of the quark and charged lepton masses and quark mixing since our present model is known to reproduce recent experimental results of the neutrino mass and oscillation. Those results are showed numerically.
We build explicit supersymmetric unification models where grand unified gauge symmetry breaking and supersymmetry (SUSY) breaking are caused by the same sector. Besides, the SM-charged particles are also predicted by the symmetry breaking sector, and they give the soft SUSY breaking terms through the so-called gauge mediation. We investigate the mass spectrums in an explicit model with SU(5) and additional gauge groups, and discuss its phenomenological aspects. Especially, nonzero A-term and B-term are generated at one-loop level according to the mediation via the vector superfields, so that the electro-weak symmetry breaking and 125 GeV Higgs mass may be achieved by the large B-term and A-term even if the stop mass is around 1 TeV.
The symmetry breaking of 5-dimensional SU(6) GUT into 4-dimensional SU(3) x SU(3) x U(1) with orbifold S1/Z2 through Scherk-Schwarz mechanism is investigated. It is shown that the origin of Little Higgs can be generated to further break SU(3) x SU(3) x U(1) down to the electroweak scale through Higgs mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا