ترغب بنشر مسار تعليمي؟ اضغط هنا

$A_4$ flavor symmetric model in SUSY SU(5) GUT

124   0   0.0 ( 0 )
 نشر من قبل Kenta Takagi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a model with $A_4$ flavor symmetry for leptons and quarks in the framework of supersymmetric SU(5) grand unified theory (GUT). The running masses of quarks and charged leptons at GUT scale ($sim 10^{16}$ GeV) are realized by the adjoint 24-dimensional Higgs multiplet and additional gauge singlet scalar fields including flavons. In this paper, we focus on a result of the quark and charged lepton masses and quark mixing since our present model is known to reproduce recent experimental results of the neutrino mass and oscillation. Those results are showed numerically.



قيم البحث

اقرأ أيضاً

We present a flavor model with the $S_3$ modular invariance in the framework of SU(5) GUT. The $S_3$ modular forms of weights $2$ and $4$ give the quark and lepton mass matrices with a common complex parameter, the modulus $tau$. The GUT relation of down-type quarks and charged leptons is imposed by the VEV of adjoint 24-dimensional Higgs multiplet in addition to the VEVs of $5$ and $bar 5$ Higgs multiples of SU(5). The observed CKM and PMNS mixing parameters as well as the mass eigenvalues are reproduced properly. We discuss the leptonic CP phase and the effective mass of the neutrinoless double beta decay with the sum of neutrino masses.
Till today lepton flavor violation has not been observed in processes involving charged leptons. Hence, a search for it is under hot pursuit both in theories and experiments. In our current work, we investigate the rates of rare decay processes such as $tau rightarrow mu gamma$ in SU(5) SUSY GUT and found that it satisfies the current bound and is one order below the projected sensitivity. This gives a corroborative argument for the influence of the large top-Yukawa coupling at the GUT scale ($lambda_{tG}$) on flavor violating decay rates of leptons which are investigable at low energy electroweak scale $M_Z$. Secondly, we discuss the decay rates of $mu rightarrow e gamma$ & $tau rightarrow mu gamma$ in MSSM with added right handed neutrino superfields. From this, we set bounds on $tan beta$ and further, we investigate the mass of $tilde{chi}^0 _1$, the LSP, using the rates of LFV decays. In the calculations, the latest updated data from LHC, neutrino oscillation experiments and constraints on branching ratios from the MEG experiment have been used.
173 - T.J. Burrows , S.F. King 2009
We propose a model in which $A_4$ Family Symmetry arises dynamically from a six dimensional orbifold SU(5) Supersymmetric Grand Unified Theory. The SU(5) is broken to the Standard Model gauge group by a particular orbifold compactification leading to $A_4$ Family Symmetry, low energy Supersymmetry and Higgs doublet-triplet splitting. The resulting four dimensional effective superpotential leads to a realistic description of quark and lepton masses and mixing angles including tri-bimaximal neutrino mixing and an inter-family mass hierarchy provided by a Froggatt-Nielsen mechanism. This model is the first which combines the idea of orbifold GUTs with $A_4$ family symmetry resulting from the orbifolding.
We study the influence of messenger Yukawa couplings and top, bottom and $tau$ Yukawa couplings on the proton lifetime in SU(5) Supersymmetric GUT with dynamical supersymmetry breaking mechanism due to Dine and Nelson.
The like-sign dimuon charge asymmetry of the $B$ meson, which was reported in the D$O$ Collaboration, is studied in the SU(5) SUSY GUT model with $S_4$ flavor symmetry. Additional CP violating effects from the squark sector are discussed in $B_s-bar B_s$ mixing process. The predicted like-sign charge asymmetry is in the 2$sigma$ range of the combined result of D$O$ and CDF measurements. Since the SUSY contributions in the quark sector affect to the lepton sector because of the SU(5) GUT relation, two predictions are given in the leptonic processes: (i) both ${rm BR}(mu to e gamma)$ and the electron EDM are close to the present upper bound, (ii) the decay ratios of $tau$ decays, $tau to mugamma$ and $tau to e gamma$, are related to each other via the Cabibbo angle $lambda_c$: ${rm BR}(tau to egamma)/{rm BR}(tau to mugamma)sime lambda_c^2$. These are testable at future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا