ﻻ يوجد ملخص باللغة العربية
We study LHC phenomenology of mirage mediation scenario in which anomaly and modulus contributions to soft SUSY breaking terms are comparable to each other. A Monte Carlo study of mirage mediation, with model parameters $alpha=1$,$ M_0=500$ GeV, $n_M=1/2$, $n_H=1$ and $rm{tan}beta=10$, is presented. It is shown that masses of supersymmetric particles can be measured in a model independent way, providing information on SUSY breaking sector. In particular, the mass ratio of gluino to the lightest neutralino for the benchmark scenario is determined to be $1.9 lesssim m_{tildeg}/m_{tildechi_1^0} lesssim 3.1$, well reproducing theoretical input value of $m_{tilde g}/m_{tildechi_1^0} simeq 2.5$ which is quite distinctive from the predictions $m_{tilde g}/m_{tildechi_1^0} gtrsim 6$ of other SUSY scenarios in which gaugino masses are unified at the GUT scale. The model parameters of mirage mediation can be also determined from various kinematic distributions.
Rather general considerations from the string theory landscape suggest a statistical preference within the multiverse for soft SUSY breaking terms as large as possible subject to a pocket universe value for the weak scale not greater than a factor of
We study the next-to-minimal supersymmetric standard model with the TeV scale mirage mediation. The 125 GeV Higgs boson mass is realized with O(10)% tuning for 1.5 TeV gluino and 1TeV stop masses.
With the aim of uncovering viable regions of parameter space in deflected mirage mediation (DMM) models of supersymmetry breaking, we study the landscape of particle mass hierarchies for the lightest four non-Standard Model states for DMM models and
We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario deflected mirage mediation, which is a generalization of the KKLT-motivated mirage me
We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can b