ترغب بنشر مسار تعليمي؟ اضغط هنا

NMSSM in TeV scale mirage mediation

110   0   0.0 ( 0 )
 نشر من قبل Tatsuo Kobayashi
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Tatsuo Kobayashi




اسأل ChatGPT حول البحث

We study the next-to-minimal supersymmetric standard model with the TeV scale mirage mediation. The 125 GeV Higgs boson mass is realized with O(10)% tuning for 1.5 TeV gluino and 1TeV stop masses.



قيم البحث

اقرأ أيضاً

Rather general considerations from the string theory landscape suggest a statistical preference within the multiverse for soft SUSY breaking terms as large as possible subject to a pocket universe value for the weak scale not greater than a factor of 2-5 from our measured value. Within the gravity/moduli-mediated SUSY breaking framework, the Higgs mass is pulled to m_h~ 125 GeV while first/second generation scalars are pulled to tens of TeV scale and gauginos and third generation scalars remain at the few TeV range. In this case, one then expects comparable moduli- and anomaly-mediated contributions to soft terms, leading to mirage mediation. For an assumed stringy natural value of the SUSY mu parameter, we evaluate predicted sparticle mass spectra for mirage mediation from a statistical scan of the string landscape. We then expect a compressed spectrum of gauginos along with a higgsino-like LSP. For a linear (quadratic) statistical draw with gravitino mass m_{3/2}~ 20 TeV, then the most probable mirage scale is predicted to be around mu_{mir}~10^{13} (10^{14}) GeV. SUSY should appear at high-luminosity LHC via higgsino pair production into soft dilepton pairs. Distinguishing mirage mediation from models with unified gaugino masses may have to await construction of an ILC with sqrt{s}>2m(higgsino).
48 - W.S. Cho , Y.G. Kim , K.Y. Lee 2007
We study LHC phenomenology of mirage mediation scenario in which anomaly and modulus contributions to soft SUSY breaking terms are comparable to each other. A Monte Carlo study of mirage mediation, with model parameters $alpha=1$,$ M_0=500$ GeV, $n_M =1/2$, $n_H=1$ and $rm{tan}beta=10$, is presented. It is shown that masses of supersymmetric particles can be measured in a model independent way, providing information on SUSY breaking sector. In particular, the mass ratio of gluino to the lightest neutralino for the benchmark scenario is determined to be $1.9 lesssim m_{tildeg}/m_{tildechi_1^0} lesssim 3.1$, well reproducing theoretical input value of $m_{tilde g}/m_{tildechi_1^0} simeq 2.5$ which is quite distinctive from the predictions $m_{tilde g}/m_{tildechi_1^0} gtrsim 6$ of other SUSY scenarios in which gaugino masses are unified at the GUT scale. The model parameters of mirage mediation can be also determined from various kinematic distributions.
We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario deflected mirage mediation, which is a generalization of the KKLT-motivated mirage me diation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. In some cases, this results in a gluino LSP and light stops; in other regions of parameter space, the LSP can be a well-tempered neutralino. We demonstrate explicitly that competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by addressing the stabilization of the gauge singlet field which is responsible for the masses of the messenger fields. For viable stabilization mechanisms, the relation between the gauge and anomaly contributions is identical in most cases to that of deflected anomaly mediation, despite the presence of the Kahler modulus. Turning to TeV scale phenomenology, we analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra. The approach sets the stage for studies of such mixed scenarios of supersymmetry breaking at the LHC.
With the aim of uncovering viable regions of parameter space in deflected mirage mediation (DMM) models of supersymmetry breaking, we study the landscape of particle mass hierarchies for the lightest four non-Standard Model states for DMM models and compare the results to that of minimal supergravity/constrained MSSM (mSUGRA/CMSSM) models, building on previous studies of Feldman, Liu, and Nath. Deflected mirage mediation is a string-motivated scenario in which the soft terms include comparable contributions from gravity mediation, gauge mediation, and anomaly mediation. DMM allows a wide variety of phenomenologically preferred models with light charginos and neutralinos, including novel patterns in which the heavy Higgs particles are lighter than the lightest superpartner. We use this analysis to motivate two DMM benchmark points to be used for more detailed collider studies. One model point has a higgsino-dominated lightest superpartner and a compressed yet heavy spectrum, while the other has a stau NLSP and similar features to mSUGRA/CMSSM models, but with a slightly less stretched spectrum.
We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can b e effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a deflected scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا