ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Consistency of the Ladder Approximation and the Rainbow Approximation of Dyson-Schwinger Equation of QCD

50   0   0.0 ( 0 )
 نشر من قبل Yu-Xin Liu
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the consistency of the ladder approximation and the rainbow approximation of the Dyson-Schwinger equation of QCD. By considering the non-Abelian property of QCD, we show that the QED-type Ward-Takahashi identity is not required for the rainbow-ladder approximation of QCD. It indicates that there does not exists any internal inconsistency in the usual rainbow-ladder approximation of QCD. In addition, we propose an modified ladder approximation which guarantees the Slavnov-Taylor identity for the quark-gluon vertex omitting the ghost effect in the approximation.



قيم البحث

اقرأ أيضاً

We present a calculation of the three-quark core contribution to nucleon and Delta-baryon masses and Delta electromagnetic form factors in a Poincare-covariant Faddeev approach. A consistent setup for the dressed-quark propagator, the quark-quark, qu ark-diquark and quark-photon interactions is employed, where all ingredients are solutions of their respective Dyson-Schwinger or Bethe-Salpeter equations in a rainbow-ladder truncation. The resulting Delta electromagnetic form factors concur with present experimental and lattice data.
We study the infrared (large separation) behavior of a massless minimally coupled scalar quantum field theory with a quartic self interaction in de Sitter spacetime. We show that the perturbation series in the interaction strength is singular and sec ular, i.e. it does not lead to a uniform approximation of the solution in the infrared region. Only a nonperturbative resummation can capture the correct infrared behavior. We seek to justify this picture using the Dyson-Schwinger equations in the ladder-rainbow approximation. We are able to write down an ordinary differential equation obeyed by the two-point function and perform its asymptotic analysis. Indeed, while the perturbative series-truncated at any finite order-is growing in the infrared, the full nonperturbative sum can be decaying.
We solve the Minkowski-space Schwinger-Dyson equation (SDE) for the fermion propagator in quantum electrodynamics (QED) with massive photons. Specifically, we work in the quenched approximation within the rainbow-ladder truncation. Loop-divergences a re regularized by the Pauli-Villars regularization. With moderately strong fermion-photon coupling, we find that the analytic structure of the fermion propagator consists of an on-shell pole and branch-cuts located in the timelike region. Such structures are consistent with the direct solution of the fermion propagator as functions of the complex momentum. Our method paves the way towards the calculation of the Minkowski-space Bethe-Salpeter amplitude using dressed fermion propagator.
144 - Peter Lowdon 2018
The gluon propagator plays a central role in determining the dynamics of QCD. In this work we demonstrate for BRST quantised QCD that the Dyson-Schwinger equation imposes significant analytic constraints on the structure of this propagator. In partic ular, we find that these constraints control the appearance of massless components in the gluon spectral density.
203 - Zhan Bai , , Yu-xin Liu 2021
We study the phase structure and phase transition of cold dense QCD matter via the Dyson-Schwinger equation approach. We take the rainbow approximation and the Gaussian-type gluon model. In order to guarantee that the quark number density begins to a ppear at the nuclear liquid-gas phase transition chemical potential, we propose a chemical potential dependent modification factor for the gluon model. We find that for the iso-symmetric quark matter, the modification reduces the chemical potential of the phase coexistence region of the first--order phase transition. We also implement the relativistic mean field theory to describe the hadron matter, and make use of the Maxwell and Gibbs construction method to study the phase transition of beta--equilibrium and charge neutral matter in compact stars. The results show that the phase transition will not happen in case of the Gaussian--type gluon model without any modification. The results also indicate that the upper boundary of the coexistence region should be larger than the current Nambu solution existing region. We also calculate the mass-radius relation of the compact stars, and find that the hadron-quark phase transition happens at too high chemical potential so that the maximum mass of the compact star is hardly affected by the hadron-quark phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا