ترغب بنشر مسار تعليمي؟ اضغط هنا

Resummation of infrared logarithms in de Sitter space via Dyson-Schwinger equations: the ladder-rainbow approximation

116   0   0.0 ( 0 )
 نشر من قبل Ahmed Youssef
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the infrared (large separation) behavior of a massless minimally coupled scalar quantum field theory with a quartic self interaction in de Sitter spacetime. We show that the perturbation series in the interaction strength is singular and secular, i.e. it does not lead to a uniform approximation of the solution in the infrared region. Only a nonperturbative resummation can capture the correct infrared behavior. We seek to justify this picture using the Dyson-Schwinger equations in the ladder-rainbow approximation. We are able to write down an ordinary differential equation obeyed by the two-point function and perform its asymptotic analysis. Indeed, while the perturbative series-truncated at any finite order-is growing in the infrared, the full nonperturbative sum can be decaying.



قيم البحث

اقرأ أيضاً

We present a calculation of the three-quark core contribution to nucleon and Delta-baryon masses and Delta electromagnetic form factors in a Poincare-covariant Faddeev approach. A consistent setup for the dressed-quark propagator, the quark-quark, qu ark-diquark and quark-photon interactions is employed, where all ingredients are solutions of their respective Dyson-Schwinger or Bethe-Salpeter equations in a rainbow-ladder truncation. The resulting Delta electromagnetic form factors concur with present experimental and lattice data.
We solve the Minkowski-space Schwinger-Dyson equation (SDE) for the fermion propagator in quantum electrodynamics (QED) with massive photons. Specifically, we work in the quenched approximation within the rainbow-ladder truncation. Loop-divergences a re regularized by the Pauli-Villars regularization. With moderately strong fermion-photon coupling, we find that the analytic structure of the fermion propagator consists of an on-shell pole and branch-cuts located in the timelike region. Such structures are consistent with the direct solution of the fermion propagator as functions of the complex momentum. Our method paves the way towards the calculation of the Minkowski-space Bethe-Salpeter amplitude using dressed fermion propagator.
Using Relativistic Quantum Geometry we study back-reaction effects of space-time inside the causal horizon of a static de Sitter metric, in order to make a quantum thermodynamical description of space-time. We found a finite number of discrete energy levels for a scalar field from a polynomial condition of the confluent hypergeometric functions expanded around $r=0$. As in the previous work, we obtain that the uncertainty principle is valid for each energy level on sub-horizon scales of space-time. We found that temperature and entropy are dependent on the number of sub-states on each energys level and the Bekenstein-Hawking temperature of each energy level is recovered when the number of sub-states of a given level tends to infinity. We propose that the primordial state of the universe could be described by a de Sitter metric with Planck energy $E_p=m_p,c^2$, and a B-H temperature: $T_{BH}=left(frac{hbar,c}{2pi,l_p,K_B}right)$.
We perform a minisuperspace analysis of an information-theoretic nonlinear Wheeler-deWitt (WDW) equation for de Sitter universes. The nonlinear WDW equation, which is in the form of a difference-differential equation, is transformed into a pure diffe rence equation for the probability density by using the current conservation constraint. In the present study we observe some new features not seen in our previous approximate investigation, such as a nonzero minimum and maximum allowable size to the quantum universe: An examination of the effective classical dynamics supports the interpretation of a bouncing universe. The studied model suggests implications for the early universe, and plausibly also for the future of an ongoing accelerating phase of the universe.
We study the dynamics of a spherically symmetric thin shell of perfect fluid embedded in d-dimensional Anti-de Sitter space-time. In global coordinates, besides collapsing solutions, oscillating solutions are found where the shell bounces back and fo rth between two radii. The parameter space where these oscillating solutions exist is scanned in arbitrary number of dimensions. As expected AdS3 appears to be singled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا