ﻻ يوجد ملخص باللغة العربية
We present the first three-flavor lattice QCD calculations for $Dto pi l u$ and $Dto K l u$ semileptonic decays. Simulations are carried out using ensembles of unquenched gauge fields generated by the MILC collaboration. With an improved staggered action for light quarks, we are able to simulate at light quark masses down to 1/8 of the strange mass. Consequently, the systematic error from the chiral extrapolation is much smaller than in previous calculations with Wilson-type light quarks. Our results for the form factors at $q^2=0$ are $f_+^{Dtopi}(0)=0.64(3)(6)$ and $f_+^{Dto K}(0) = 0.73(3)(7)$, where the first error is statistical and the second is systematic, added in quadrature. Combining our results with experimental branching ratios, we obtain the CKM matrix elements $|V_{cd}|=0.239(10)(24)(20)$ and $|V_{cs}|=0.969(39)(94)(24)$, where the last errors are from experimental uncertainties.
We present results for form factors of semileptonic decays of $D$ and $B$ mesons in 2+1 flavor lattice QCD using the MILC gauge configurations. With an improved staggered action for light quarks, we successfully reduce the systematic error from the c
Assuming the ${bar D}^0, D^-, D^-_s$ and $B^+, B^0, B_s^0$ mesons belong to triplets of SU(3) flavor symmetry, we analyse the form factors in the semileptonic decays of these mesons. Both quark and meson mass differences are taken into account. We fi
In this work we discuss in detail the non-perturbative determination of the momentum dependence of the form factors entering in semileptonic decays using unitarity and analyticity constraints. The method contains several new elements with respect to
Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision o
We present first lattice QCD results for semileptonic form factors for the decays $B_c to eta_c l u$ and $B_c to J/psi l u$ over the full $q^2$ range, using both improved non-relativistic QCD (NRQCD) and fully relativistic (HISQ) formalisms. These