ﻻ يوجد ملخص باللغة العربية
We present first lattice QCD results for semileptonic form factors for the decays $B_c to eta_c l u$ and $B_c to J/psi l u$ over the full $q^2$ range, using both improved non-relativistic QCD (NRQCD) and fully relativistic (HISQ) formalisms. These can be viewed as prototype calculations for pseudoscalar to pseudoscalar and pseudoscalar to vector decays involving a $b to c$ transition. In particular we can use information from the relativistic computations to fix the NRQCD current normalisations, which can then be used in improved computations of decays such as $B to D l u$ and $B to D^* l u$.
In this work we discuss in detail the non-perturbative determination of the momentum dependence of the form factors entering in semileptonic decays using unitarity and analyticity constraints. The method contains several new elements with respect to
We present a new study of the form factors for D -> K semileptonic decay from lattice QCD that allows us to compare the shape of the vector form factor to experiment and, for the first time, to extract V_cs using results from all experimental q^2 bin
The semileptonic process, B --> pi l u, is studied via full QCD Lattice simulations. We use unquenched gauge configurations generated by the MILC collaboration. These include the effect of vacuum polarization from three quark flavors: the $s$ quark
We develop a method to compute inclusive semi-leptonic decay rate of hadrons fully non-perturbatively using lattice QCD simulations. The sum over all possible final states is achieved by a calculation of the forward-scattering matrix elements on the
We present the first results for the Kl3 form factor from simulations with 2+1 flavours of dynamical domain wall quarks. Combining our result, namely f_+(0)=0.964(5), with the latest experimental results for Kl3 decays leads to |V_{us}|=0.2249(14), r