ﻻ يوجد ملخص باللغة العربية
In this paper we present the results of numerical studies of the JIMWLK and BK equations with a particular emphasis on the universal scaling properties and phase space structure involved. The results are valid for near zero impact parameter in DIS. We demonstrate IR safety due to the occurrence of a rapidity dependent saturation scale Q_s(tau). Within the set of initial conditions chosen both JIMWLK and BK equations show remarkable agreement. We point out the crucial importance of running coupling corrections to obtain consistency in the UV. Despite the scale breaking induced by the running coupling we find that evolution drives correlators towards an asymptotic form with near scaling properties. We discuss asymptotic features of the evolution, such as the tau- and A-dependence of Q_s away from the initial condition.
We present a global fit to the structure function F_2 measured in lepton-proton experiments at small values of Bjorken-x, x< 0.01, for all experimentally available values of Q^2, 0.045< Q^2 < 800 GeV^2, using the Balitsky -Kovchegov equation includin
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small-x limit, for the various unpolarized TMD gluon distribut
The problems linked with the extraction of the basic parameters of the hadron elastic scattering amplitude at the LHC are explored. It is shown that one should take into account the saturation regime which will lead to new effects at the LHC.
We calculate some ${cal O}(alpha_s^2)$ corrections to the JIMWLK kernel in the framework of the light-cone wave function approach to the high energy limit of QCD. The contributions that we consider originate from higher order corrections in the stron
A method of determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton and proton-nuclei elastic scattering at small momentum transfer. The method allows to decrease the number of model assumptions, t