ﻻ يوجد ملخص باللغة العربية
A method of determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton and proton-nuclei elastic scattering at small momentum transfer. The method allows to decrease the number of model assumptions, to obtain the real parts of the spin non-flip and spin-flip amplitudes in the narrow region of momentum transfer.
The problems linked with the extraction of the basic parameters of the hadron elastic scattering amplitude at the LHC are explored. It is shown that one should take into account the saturation regime which will lead to new effects at the LHC.
Using a unified analytic representation for the elastic scattering amplitudes of pp scattering valid for all energy region, the behavior of observables in the LHC collisions in the range $sqrt{s}$= 2.76 - 14 TeV is discussed. Similarly to the case of
A new method for the determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton and proton-nuclei elastic scattering at small momentum transfer. This method allows to decrease the number of model assu
Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum transfer range 4 GeV*2 < |t| < 10 GeV*2 is planned to be measured by the TOTEM group. We study this process in a model where the deep-elastic scattering is due to a single hard c
We predict pp elastic differential cross sections at LHC at c.m. energy 14 TeV and momentum transfer range |t| = 0 - 10 GeV*2 in a nucleon-structure model. In this model, the nucleon has an outer cloud of quark-antiquark condensed ground state, an in