ﻻ يوجد ملخص باللغة العربية
The dynamical triangulations approach to quantum gravity is investigated in detail for the first time in five dimensions. In this case, the most general action that is linear in components of the f-vector has three terms. It was suspected that the corresponding space of couplings would yield a rich phase structure. This work is primarily motivated by the hope that this new viewpoint will lead to a deeper understanding of dynamical triangulations in general. Ultimately, this research programme may give a better insight into the potential application of dynamical triangulations to quantum gravity. This thesis serves as an exploratory study of this uncharted territory. The five dimensional (k,l) moves used in the Monte Carlo algorithm are proven to be ergodic in the space of combinatorially equivalent simplicial 5-manifolds. A statement is reached regarding the possible existence of an exponential upper bound on the number of combinatorially equivalent triangulations of the 5-sphere. Monte Carlo simulations reveal non-trivial phase structure which is analysed in some detail. Further investigations deal with the geometric and fractal nature of triangulations. This is followed by a characterisation of the weak coupling limit in terms of stacked spheres. Simple graph theory arguments are used to reproduce and generalise a well-known result in combinatorial topology. Finally, a comprehensive study of singular structures in dynamical triangulations is presented. It includes a new understanding of their existence, which appears to be consistent with the non-existence of singular vertices in three dimensions. The thesis is concluded with an overview of results, general discussion and suggestions for future work.
We study Kahler-Dirac fermions on Euclidean dynamical triangulations. This fermion formulation furnishes a natural extension of staggered fermions to random geometries without requring vielbeins and spin connections. We work in the quenched approxima
In order to consider non-perturbative effects of superstrings, we try to apply dynamical triangulations to the type IIB superstrings. The discretized action is constructed from the type IIB matrix model proposed as a constructive definition of supers
For dynamical triangulations in dimensions d<=4 the most general action has two couplings. We note that the most general action for d=5 has three couplings. We explore this larger coupling space using Monte Carlo simulations. Initial results indicate evidence for non-trivial phase structure.
We reconsider the criticality of the Ising model on two-dimensional dynamical triangulations based on the N-by-N hermitian two-matrix model with the introduction of a loop-counting parameter and linear terms in the potential. We show that in the larg
Previous work has shown that the macroscopic structure of the theory of quantum gravity defined by causal dynamical triangulations (CDT) is compatible with that of a de Sitter universe. After emphasizing the strictly nonperturbative nature of this se