ﻻ يوجد ملخص باللغة العربية
For dynamical triangulations in dimensions d<=4 the most general action has two couplings. We note that the most general action for d=5 has three couplings. We explore this larger coupling space using Monte Carlo simulations. Initial results indicate evidence for non-trivial phase structure.
We study Kahler-Dirac fermions on Euclidean dynamical triangulations. This fermion formulation furnishes a natural extension of staggered fermions to random geometries without requring vielbeins and spin connections. We work in the quenched approxima
The dynamical triangulations approach to quantum gravity is investigated in detail for the first time in five dimensions. In this case, the most general action that is linear in components of the f-vector has three terms. It was suspected that the co
We put forward a unimodular $N=1, d=4$ anti-de Sitter supergravity theory off shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime wit
In order to consider non-perturbative effects of superstrings, we try to apply dynamical triangulations to the type IIB superstrings. The discretized action is constructed from the type IIB matrix model proposed as a constructive definition of supers
We report on our first experiences in simulating Neuberger valence fermions on CLS $N_f=2$ configurations with light sea quark masses and small lattice spacings. Valence quark masses are considered that allow to explore the matching to (partially que