ﻻ يوجد ملخص باللغة العربية
We present and discuss the results of a Monte-Carlo simulation of the phase transition in pure compact U(1) lattice gauge theory with Wilson action on a hypercubic lattice with periodic boundary conditions. The statistics are large enough to make a thorough analysis of the size dependence of the gap. In particular we find a non-zero latent heat in the infinite volume limit. We also find that the critical exponents $ u$ and $alpha$ are consistent with the hyperscaling relation but confirm that the critical behavior is different from a conventional first-order transition.
We study the three-dimensional U(1)+Higgs theory (Ginzburg-Landau model) as an effective theory for finite temperature phase transitions from the 1 K scale of superconductivity to the relativistic scales of scalar electrodynamics. The relations betwe
We investigate the continuum limit of a compact formulation of the lattice U(1) gauge theory in 4 dimensions using a nonperturbative gauge-fixed regularization. We find clear evidence of a continuous phase transition in the pure gauge theory for all
We investigate four-dimensional compact U(1) lattice gauge theory with a monopole term added to the Wilson action. First we consider the phase structure at negative $beta$, revealing some properties of a third phase region there, in particular the ex
We calculate the energy gap (latent heat) and pressure gap between the hot and cold phases of the SU(3) gauge theory at the first order deconfining phase transition point. We perform simulations around the phase transition point with the lattice size
We study analytically and numerically the three-dimensional U(1) lattice gauge theory at finite temperature in the dual formulation. For an appropriate disorder operator, we obtain the renormalization group equations describing the critical behavior