ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase structure of U(1) lattice gauge theory with monopole term

134   0   0.0 ( 0 )
 نشر من قبل Werner Kerler
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate four-dimensional compact U(1) lattice gauge theory with a monopole term added to the Wilson action. First we consider the phase structure at negative $beta$, revealing some properties of a third phase region there, in particular the existence of a number of different states. Then our present studies concentrate on larger values of the monopole coupling $lambda$ where the confinement-Coulomb phase transition turns out to become of second order. Performing a finite-size analysis we find that the critical exponent $ u$ is close to, however, different from the gaussian value and that in the range considered $ u$ increases somewhat with $lambda$.



قيم البحث

اقرأ أيضاً

103 - G. Damm , W. Kerler 1998
In 4D compact U(1) lattice gauge theory with a monopole term added to the Wilson action we first reveal some properties of a third phase region at negative $beta$. Then at some larger values of the monopole coupling $lambda$ by a finite-size analysis we find values of the critical exponent $ u$ close to, however, different from the Gaussian value.
182 - G. Damm , W. Kerler 1997
We investigate critical properties of the phase transition in the four-dimensional compact U(1) lattice gauge theory supplemented by a monopole term for values of the monopole coupling $lambda$ such that the transition is of second order. It has been previously shown that at $lambda= 0.9$ the critical exponent is already characteristic of a second-order transition and that it is different from the one of the Gaussian case. In the present study we perform a finite size analysis at $lambda=1.1$ to get information wether the value of this exponent is universal.
117 - T.Ono , S.Doi , Y.Hori 2009
We study the three-dimensional (3D) compact U(1) lattice gauge theory coupled with $N$-flavor Higgs fields by means of the Monte Carlo simulations. This model is relevant to multi-component superconductors, antiferromagnetic spin systems in easy plan e, inflational cosmology, etc. It is known that there is no phase transition in the N=1 model. For N=2, we found that the system has a second-order phase transition line $tilde{c}_1(c_2)$ in the $c_2$(gauge coupling)$-c_1$(Higgs coupling) plane, which separates the confinement phase and the Higgs phase. Numerical results suggest that the phase transition belongs to the universality class of the 3D XY model as the previous works by Babaev et al. and Smiseth et al. suggested. For N=3, we found that there exists a critical line similar to that in the N=2 model, but the critical line is separated into two parts; one for $c_2 < c_{2{rm tc}}=2.4pm 0.1$ with first-order transitions, and the other for $ c_{2{rm tc}} < c_2$ with second-order transitions, indicating the existence of a tricritical point. We verified that similar phase diagram appears for the N=4 and N=5 systems. We also studied the case of anistropic Higgs coupling in the N=3 model and found that there appear two second-order phase transitions or a single second-order transition and a crossover depending on the values of the anisotropic Higgs couplings. This result indicates that an enhancement of phase transition occurs when multiple phase transitions coincide at a certain point in the parameter space.
We discuss a phase diagram for a relativistic SU(2) x U_{S}(1) lattice gauge theory, with emphasis on the formation of a parity-invariant chiral condensate, in the case when the $U_{S}(1)$ field is infinitely coupled, and the SU(2) field is moved awa y from infinite coupling by means of a strong-coupling expansion. We provide analytical arguments on the existence of (and partially derive) a critical line in coupling space, separating the phase of broken SU(2) symmetry from that where the symmetry is unbroken. We review uncoventional (Kosterlitz-Thouless type) superconducting properties of the model, upon coupling it to external electromagnetic potentials. We discuss the r^ole of instantons of the unbroken subgroup U(1) of SU(2), in eventually destroying superconductivity under certain circumstances. The model may have applications to the theory of high-temperature superconductivity. In particular, we argue that in the regime of the couplings leading to the broken SU(2) phase, the model may provide an explanation on the appearance of a pseudo-gap phase, lying between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The absence of superconductivity in this phase is attributed to non-perturbative effects (instantons) of the subgroup U(1) of SU(2).
A conceptually simple model for strongly interacting compact U(1) lattice gauge theory is expressed as operators acting on qubits. The number of independent gauge links is reduced to its minimum through the use of Gausss law. The model can be impleme nted with any number of qubits per gauge link, and a choice as small as two is shown to be useful. Real-time propagation and real-time collisions are observed on lattices in two spatial dimensions. The extension to three spatial dimensions is also developed, and a first look at 3-dimensional real-time dynamics is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا