ﻻ يوجد ملخص باللغة العربية
We construct lattice gauge theories in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. These quantum link models are related to ordinary lattice gauge theories in the same way as quantum spin models are related to ordinary classical spin systems. Here U(1) and SU(2) quantum link models are constructed explicitly. As Hamiltonian theories quantum link models are nonrelativistic gauge theories with potential applications in condensed matter physics. When formulated with a fifth Euclidean dimension, universality arguments suggest that dimensional reduction to four dimensions occurs. Hence, quantum link models are also reformulations of ordinary quantum field theories and are applicable to particle physics, for example to QCD. The configuration space of quantum link models is discrete and hence their numerical treatment should be simpler than that of ordinary lattice gauge theories with a continuous configuration space.
The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for $U(1)$ gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ ope
Quantum spin and quantum link models provide an unconventional regularization of field theory in which classical fields arise via dimensional reduction of discrete variables. This D-theory regularization leads to the same continuum theories as the co
We provide the evidence for the existence of partially deconfined phase in large-$N$ gauge theory. In this phase, the SU($M$) subgroup of SU($N$) gauge group deconfines, where $frac{M}{N}$ changes continuously from zero (confined phase) to one (decon
We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under
We define gauge theories whose gauge group includes charge conjugation as well as standard $mathrm{SU}(N)$ transformations. When combined, these transformations form a novel type of group with a semidirect product structure. For $N$ even, we show tha