ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Energy Effective Theories of Quantum Link and Quantum Spin Models

319   0   0.0 ( 0 )
 نشر من قبل Boris Schlittgen
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum spin and quantum link models provide an unconventional regularization of field theory in which classical fields arise via dimensional reduction of discrete variables. This D-theory regularization leads to the same continuum theories as the conventional approach. We show this by deriving the low-energy effective Lagrangians of D-theory models using coherent state path integral techniques. We illustrate our method for the $(2+1)$-d Heisenberg quantum spin model which is the D-theory regularization of the 2-d O(3) model. Similarly, we prove that in the continuum limit a $(2+1)$-d quantum spin model with $SU(N)_Ltimes SU(N)_Rtimes U(1)_{L=R}$ symmetry is equivalent to the 2-d principal chiral model. Finally, we show that $(4+1)$-d SU(N) quantum link models reduce to ordinary 4-d Yang-Mills theory.



قيم البحث

اقرأ أيضاً

We construct lattice gauge theories in which the elements of the link matrices are represented by non-commuting operators acting in a Hilbert space. These quantum link models are related to ordinary lattice gauge theories in the same way as quantum s pin models are related to ordinary classical spin systems. Here U(1) and SU(2) quantum link models are constructed explicitly. As Hamiltonian theories quantum link models are nonrelativistic gauge theories with potential applications in condensed matter physics. When formulated with a fifth Euclidean dimension, universality arguments suggest that dimensional reduction to four dimensions occurs. Hence, quantum link models are also reformulations of ordinary quantum field theories and are applicable to particle physics, for example to QCD. The configuration space of quantum link models is discrete and hence their numerical treatment should be simpler than that of ordinary lattice gauge theories with a continuous configuration space.
The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for $U(1)$ gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ ope rators, known as quantum link models. For quantum electrodynamics (QED) in one spatial dimension, we numerically demonstrate the continuum limit by extrapolating the ground state energy, the scalar, and the vector meson masses to large spin lengths $S$, large volume $N$, and vanishing lattice spacing $a$. By analytically solving Gauss law for arbitrary $S$, we obtain a generalized PXP spin model and count the physical Hilbert space dimension analytically. This allows us to quantify the required resources for reliable extrapolations to the continuum limit on quantum devices. We use a functional integral approach to relate the model with large values of half-integer spins to the physics at topological angle $Theta=pi$. Our findings indicate that quantum devices will in the foreseeable future be able to quantitatively probe the QED regime with quantum link models.
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativi stic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum link models are a novel formulation of gauge theories in terms of discrete degrees of freedom. These degrees of freedom are described by quantum operators acting in a finite-dimensional Hilbert space. We show that for certain representations of the operator algebra, the usual Yang-Mills action is recovered in the continuum limit. The quantum operators can be expressed as bilinears of fermionic creation and annihilation operators called rishons. Using the rishon representation the quantum link Hamiltonian can be expressed entirely in terms of color-neutral operators. This allows us to study the large N_c limit of this model. In the t Hooft limit we find an area law for the Wilson loop and a mass gap. Furthermore, the strong coupling expansion is a topological expansion in which graphs with handles and boundaries are suppressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا