We present results for the first two moments of the distribution amplitudes of pseudoscalar mesons. Using two flavors of non-perturbatively improved clover fermions and non-perturbative renormalization of the matrix elements we perform both chiral and continuum extrapolations and compare with recent results from models and experiments.
We present the first lattice determination of the two lowest Gegenbauer moments of the leading-twist pion and kaon light-cone distribution amplitudes with full control of all errors. The calculation is carried out on 35 different CLS ensembles with $
N_f=2+1$ flavors of dynamical Wilson-clover fermions. These cover a multitude of pion and kaon mass combinations (including the physical point) and 5 different lattice spacings down to $a=0.039,$fm. The momentum smearing technique and a new operator basis are employed to reduce statistical fluctuations and to improve the overlap with the ground states. The results are obtained from a combined chiral and continuum limit extrapolation that includes three separate trajectories in the quark mass plane. The present arXiv version (v3) includes an Addendum where we update the results using the recently calculated three-loop matching factors for the conversion from the RI/SMOM to the $overline{text{MS}}$ scheme. We find $a_2^pi=0.116^{+19}_{-20}$ for the pion, $a_1^K=0.0525^{+31}_{-33}$ and $a_2^K=0.106^{+15}_{-16}$ for the kaon. We also include the previous values, which were obtained with two-loop matching.
Results are presented for the lowest moment of the distribution amplitude for the K-star vector meson. Both longitudinal and transverse moments are investigated. We use two flavours of O(a) improved Wilson fermions, together with a non-perturbative renormalisation of the matrix element.
Based on lattice simulations with two flavours of dynamical, O(a)-improved Wilson fermions we present results for the first two moments of the distribution amplitudes of pseudoscalar mesons at several values of the valence quark masses. By extrapolat
ing our results to the physical masses of up/down and strange quarks, we find the first two moments of the K^+ distribution amplitude and the second moment of the pi^+ distribution amplitude. We use nonperturbatively determined renormalisation coefficients to obtain results in the MSbar scheme. At a scale of 4 GeV^2 we find a_2^pi=0.201(114) for the second Gegenbauer moment of the pions distribution amplitude, while for the kaon, a_1^K=0.0453(9)(29) and a_2^K=0.175(18)(47).
We present an update of the MILC investigation of the properties of light pseudoscalar mesons using three flavors of improved staggered quarks. Results are presented for the $pi$ and $K$ leptonic decay constants, the CKM matrix element $V_{us}$, the
up, down and strange quark masses, and the coefficients of the $O(p^4)$ chiral lagrangian. We have new data for lattice spacing $a approx 0.15$ fm with several values of the light quark mass down to one-tenth the strange quark mass, higher statistics for $a approx 0.09$ fm with the light quark mass equal to one-tenth the strange quark mass, and initial results for our smallest lattice spacing, $a approx 0.06$ fm with light quark mass two-fifths of the strange quark mass.
We present a non-perturbative lattice calculation of the form factors which contribute to the amplitudes for the radiative decays $Pto ell bar u_ell gamma$, where $P$ is a pseudoscalar meson and $ell$ is a charged lepton. Together with the non-pertu
rbative determination of the corrections to the processes $Pto ell bar u_ell$ due to the exchange of a virtual photon, this allows accurate predictions at $O(alpha_{em})$ to be made for leptonic decay rates for pseudoscalar mesons ranging from the pion to the $D_s$ meson. We are able to separate unambiguously and non-pertubatively the point-like contribution, from the structure-dependent, infrared-safe, terms in the amplitude. The fully non-perturbative $O(a)$ improved calculation of the inclusive leptonic decay rates will lead to the determination of the corresponding Cabibbo-Kobayashi-Maskawa (CKM) matrix elements also at $O(alpha_{em})$. Prospects for a precise evaluation of leptonic decay rates with emission of a hard photon are also very interesting, especially for the decays of heavy $D$ and $B$ mesons for which currently only model-dependent predictions are available to compare with existing experimental data.