Results are presented for the lowest moment of the distribution amplitude for the K-star vector meson. Both longitudinal and transverse moments are investigated. We use two flavours of O(a) improved Wilson fermions, together with a non-perturbative renormalisation of the matrix element.
We present results for the first two moments of the distribution amplitudes of pseudoscalar mesons. Using two flavors of non-perturbatively improved clover fermions and non-perturbative renormalization of the matrix elements we perform both chiral an
d continuum extrapolations and compare with recent results from models and experiments.
We present the first lattice determination of the two lowest Gegenbauer moments of the leading-twist pion and kaon light-cone distribution amplitudes with full control of all errors. The calculation is carried out on 35 different CLS ensembles with $
N_f=2+1$ flavors of dynamical Wilson-clover fermions. These cover a multitude of pion and kaon mass combinations (including the physical point) and 5 different lattice spacings down to $a=0.039,$fm. The momentum smearing technique and a new operator basis are employed to reduce statistical fluctuations and to improve the overlap with the ground states. The results are obtained from a combined chiral and continuum limit extrapolation that includes three separate trajectories in the quark mass plane. The present arXiv version (v3) includes an Addendum where we update the results using the recently calculated three-loop matching factors for the conversion from the RI/SMOM to the $overline{text{MS}}$ scheme. We find $a_2^pi=0.116^{+19}_{-20}$ for the pion, $a_1^K=0.0525^{+31}_{-33}$ and $a_2^K=0.106^{+15}_{-16}$ for the kaon. We also include the previous values, which were obtained with two-loop matching.
In this work we use the framework of the Dyson-Schwinger and Bethe-Salpeter equations to compute Light-Cone Distribution Amplitudes of heavy-light mesons and quarkonia. In studying the meson properties, we introduce a flavor dependence in the heavy-q
uark sector of the Bethe-Salpeter ladder kernel which yields improved numerical results for masses and leptonic decay constants of the pseudoscalar $D$, $D_s$, $B$ and $B_s$ mesons. Finally, the corresponding heavy-light Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory.
The ladder kernel of the Bethe-Salpeter equation is amended by introducing a different flavor dependence of the dressing functions in the heavy-quark sector. Compared with earlier work this allows for the simultaneous calculation of the mass spectrum
and leptonic decay constants of light pseudoscalar mesons, the $D_u$, $D_s$, $B_u$, $B_s$ and $B_c$ mesons and the heavy quarkonia $eta_c$ and $eta_b$ within the same framework at a physical pion mass. The corresponding Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory. A comparison with the first inverse moment of the heavy meson distribution amplitude in heavy quark effective theory is made.
We present results of the first ab initio lattice QCD calculation of the normalization constants and first moments of the leading twist distribution amplitudes of the full baryon octet, corresponding to the small transverse distance limit of the asso
ciated S-wave light-cone wave functions. The P-wave (higher twist) normalization constants are evaluated as well. The calculation is done using $N_f=2+1$ flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to 222 MeV. Significant SU(3) flavor symmetry violation effects in the shape of the distribution amplitudes are observed.