ﻻ يوجد ملخص باللغة العربية
The couplings between the soft pion and the doublet of heavy-light mesons are basic parameters of the ChPT approach to the heavy-light systems. We compute the unquenched (Nf=2) values of two such couplings in the static heavy quark limit: (1) g^, coupling to the lowest doublet of heavy-light mesons, and (2) g~, coupling to the first orbital excitations. A brief description of the calculation together with a short discussion of the results is presented.
We compute charm and bottom quark masses in the quenched approximation and in the continuum limit of lattice QCD. We make use of a step scaling method, previously introduced to deal with two scale problems, that allows to take the continuum limit of
Following the procedure and motivations developed by Richardson, Buchmuller and Tye, we derive the potential of static quarks consistent with both the three-loop running of QCD coupling constant under the two-loop perturbative matching of V and MS-ba
We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC--UKQCDs $N_f=2+1$ domain wall fermion ensembles with physi
We measure the hadronic contribution to the vacuum polarisation tensor, and use it to estimate the hadronic contribution to (g-2)_mu, the muon anomalous magnetic moment.
We perform a numerical computation of the anomalous magnetic moment ($g-2$) of the electron in QED by using the stochastic perturbation theory. Formulating QED on the lattice, we develop a method to calculate the coefficients of the perturbative seri