ﻻ يوجد ملخص باللغة العربية
We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC--UKQCDs $N_f=2+1$ domain wall fermion ensembles with physical light sea quark masses at two lattice spacings. We consider a large number of analysis scenarios in order to obtain solid estimates for residual systematic effects. Our final result in the continuum limit is $a_mu^{(2),{rm had},,s}=53.1(9)left(^{+1}_{-3}right)times10^{-10}$.
The persistent discrepancy of about 3.5 standard deviations between the experimental measurement and the Standard Model prediction for the muon anomalous magnetic moment, $a_mu$, is one of the most promising hints for the possible existence of new ph
We report our recent lattice calculation of hadronic light-by-light contribution to muon $g-2$ using our recently developed moment method. The connected diagrams and the leading disconnected diagrams are included. The calculation is performed on a $4
We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for fi
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_mu^{mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum pol
We report on our computation of the leading hadronic contribution to the anomalous magnetic moment of the muon using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. The strange quark is introduced in the quenched approxima