ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadron Structure from Lattice QCD

99   0   0.0 ( 0 )
 نشر من قبل John W. Negele
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure of neutrons, protons, and other strongly interacting particles is now being calculated in full, unquenched lattice QCD with quark masses entering the chiral regime. This talk describes selected examples, including the nucleon axial charge, structure functions, electromagnetic form factors, the origin of the nucleon spin, the transverse structure of the nucleon, and the nucleon to Delta transition form factor.



قيم البحث

اقرأ أيضاً

255 - Jeremy Green 2014
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing re sources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.
180 - Huey-Wen Lin 2012
Study of the hadronic matrix elements can provide not only tests of the QCD sector of the Standard Model (in comparing with existing experiments) but also reliable low-energy hadronic quantities applicable to a wide range of beyond-the-Standard Model scenarios where experiments or theoretical calculations are limited or difficult. On the QCD side, progress has been made in the notoriously difficult problem of addressing gluonic structure inside the nucleon, reaching higher-$Q^2$ region of the form factors, and providing a complete picture of the proton spin. However, even further study and improvement of systematic uncertainties are needed. There are also proposed calculations of higher-order operators in the neutron electric dipole moment Lagrangian, which would be useful when combined with effective theory to probe BSM. Lattice isovector tensor and scalar charges can be combined with upcoming neutron beta-decay measurements of the Fierz interference term and neutrino asymmetry parameter to probe new interactions in the effective theory, revealing the scale of potential new TeV particles. Finally, I revisit the systematic uncertainties in recent calculations of $g_A$ and review prospects for future calculations.
We review the status of lattice calculations of the deep-inelastic structure functions of the nucleon. In addition, we present some results on the pion and rho structure functions.
108 - Dru B. Renner 2010
Lattice QCD calculations of hadron structure are a valuable complement to many experimental programs as well as an indispensable tool to understand the dynamics of QCD. I present a focused review of a few representative topics chosen to illustrate bo th the challenges and advances of our community: the momentum fraction, axial charge and charge radius of the nucleon. I will discuss the current status of these calculations and speculate on the prospects for accurate calculations of hadron structure from lattice QCD.
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necess itating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested, and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا