ﻻ يوجد ملخص باللغة العربية
The fractal properties of four-dimensional Euclidean simplicial manifold generated by the dynamical triangulation are analyzed on the geodesic distance D between two vertices instead of the usual scale between two simplices. In order to make more unambiguous measurement of the fractal dimension, we employ a different approach from usual, by measuring the box-counting dimension which is computed by counting the number of spheres with the radius D within the manifold. The numerical result is consistent to the result of the random walk model in the branched polymer region. We also measure the box-counting dimension of the manifold with additional matter fields. Numerical results suggest that the fractal dimension takes value of slightly more than 4 near the critical point. Furthermore, we analyze the correlation functions as functions of the geodesic distance. Numerically, it is suggested that the fractal structure of four-dimensional simplicial manifold can be properly analyzed in terms of the distance between two vertices. Moreover, we show that the behavior of the correlation length regards the phase structure of 4D simplicial manifold.
Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N_X) and gauge fields (N_A) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent gamma^{(4)} is estimated. Furtherm
A thorough numerical examination for the field theory of 4D quantum gravity (QG) with a special emphasis on the conformal mode dependence has been studied. More clearly than before, we obtain the string susceptibility exponent of the partition functi
Scaling relations in four-dimensional simplicial quantum gravity are proposed using the concept of the geodesic distance. Based on the analogy of a loop length distribution in the two-dimensional case, the scaling relations of the boundary volume dis
In this talk we reexamine the possibility of evaluating parton distribution functions from lattice simulations. We show that, while in principle individual moments can be extracted from lattice data, in all cases the process of renormalization, hinde
We discuss a $lambdavarphi^{4}+rhovarphi^{6}$ scalar field model defined in the Euclidean section of the Schwarzschild solution of the Einstein equations in the presence of multiplicative noise. The multiplicative random noise is a model for fluctuat