ﻻ يوجد ملخص باللغة العربية
In this talk we reexamine the possibility of evaluating parton distribution functions from lattice simulations. We show that, while in principle individual moments can be extracted from lattice data, in all cases the process of renormalization, hindered by lattice momenta limitation, represents an obstruction to a direct calculation of the full parton distribution function from QCD simulations. We discuss the case of the Ji quasi-parton distribution functions, the possibility of using the reduced Ioffe-time distributions and the more recent proposal of directly subtracting power divergent mixings in perturbation theory.
We propose a method to reconstruct smeared spectral functions from two-point correlation functions measured on the Euclidean lattice. Arbitrary smearing function can be considered as far as it is smooth enough to allow an approximation using Chebyshe
A relation is presented between single-hadron long-range matrix elements defined in a finite Euclidean spacetime, and the corresponding infinite-volume Minkowski amplitudes. This relation is valid in the kinematic region where any number of two-hadro
Building upon our recent study arXiv:1709.04325, we investigate the feasibility of calculating the pion distribution amplitude from suitably chosen Euclidean correlation functions at large momentum. We demonstrate in this work the advantage of analyz
A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black holes horizon unex
We study Kahler-Dirac fermions on Euclidean dynamical triangulations. This fermion formulation furnishes a natural extension of staggered fermions to random geometries without requring vielbeins and spin connections. We work in the quenched approxima