ﻻ يوجد ملخص باللغة العربية
The gravitational force on antimatter has never been directly measured. A method is suggested for measuring the acceleration of antimatter $(bar g)$ by measuring the deflection of a beam of neutral antihydrogen atoms in the Earths gravitational field. While a simple position measurement of the beam could be used, a more efficient measurement can be made using a transmission interferometer. A 1% measurement of $bar g$ should be possible from a beam of about 100,000 atoms, with the ultimate accuracy being determined largely by the number of antihydrogen atoms that can be produced. A method is suggested for producing an antihydrogen beam appropriate for this experiment.
The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moire deflectometer. The goal is to determine the gravitational acceleration
The formation of the antihydrogen beam in the AEGIS experiment through the use of inhomogeneous electric fields is discussed and simulation results including the geometry of the apparatus and realistic hypothesis about the antihydrogen initial condit
Primordial gravitational waves generated during inflation lead to the B-mode polarization in the cosmic microwave background and a stochastic gravitational wave background in the Universe. We will explore the current constraint on the tilt of primord
One of the major limitations of atomic gravimeters is represented by the vibration noise of the measurement platform, which cannot be distinguished from the relevant acceleration signal. We demonstrate a new method to perform an atom interferometry m
Parity violating interactions in the early Universe can source a stochastic gravitational wave background (SGWB) with a net circular polarization. In this paper, we study possible ways to search for circular polarization of the SGWB with interferomet