ﻻ يوجد ملخص باللغة العربية
The measurement of the pion-nucleon scattering lengths constitutes a high-precision test of the methods of Chiral Pertubation Theory, which is the low-energy approach of QCD. The pion-nucleon s-wave scattering lengths are related to the strong-interaction shift and width of the s-states of the pionic hydrogen atom. Shift and width are determined from the measured energies and line widths of X-ray transitions to the 1s ground state when compared to the calculated electromagnetic values. A new experiment, set up at the Paul-Scherrer-Institut, has completed a first series of measurements.
The hadronic shift in pionic hydrogen has been redetermined to be $epsilon_{1s}=7.086,pm,0.007(stat),pm,0.006(sys)$,eV by X-ray spectroscopy of ground state transitions applying various energy calibration schemes. The experiment was performed at the
We report results on J/psi-hadron azimuthal angular correlations in 200 GeV p+p collision in the STAR experiment at RHIC. The extracted B-hadron feed-down contribution to inclusive J/psi yield is found to be 10-25% in 4<p_T<12 GeV/c and has no signif
The strong interaction shift and broadening in pionic deuterium have been remeasured with high statistics by means of the (3p-1s) X-ray transition using the cyclotron trap and a high-resolution crystal spectrometer. Preliminary results are (-2325+/-3
The strong interaction shift $epsilon$ and broadening {Gamma} in pionic deuterium have been determined in a high statistics study of the {pi}D(3p - 1s) X-ray transition using a high-resolution crystal spectrometer. The pionic deuterium shift will pro
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/psi$ and cross-section ratio of $psi(2S)$ to $J/psi$ at forward rapid